Neutrophils are indispensable for clearing infections with the prominent human pathogen Staphylococcus aureus. Here, we report that S. aureus secretes a family of proteins that potently inhibits the activity of neutrophil serine proteases (NSPs): neutrophil elastase (NE), proteinase 3, and cathepsin G. The NSPs, but not related serine proteases, are specifically blocked by the extracellular adherence protein (Eap) and the functionally orphan Eap homologs EapH1 and EapH2, with inhibitory-constant values in the low-nanomolar range. Eap proteins are together essential for NSP inhibition by S. aureus in vitro and promote staphylococcal infection in vivo. The crystal structure of the EapH1/NE complex showed that Eap molecules constitute a unique class of noncovalent protease inhibitors that occlude the catalytic cleft of NSPs. These findings increase our insights into the complex pathogenesis of S. aureus infections and create opportunities to design novel treatment strategies for inflammatory conditions related to excessive NSP activity.immune evasion | bacteria | phagocytes
Innate immune chemoreceptors of the formyl peptide receptor (Fpr) family are expressed by vomeronasal sensory neurons (VSNs) in the accessory olfactory system. Their biological function and coding mechanisms remain unknown. We show that mouse Fpr3 (Fpr-rs1) recognizes the core peptide motif f-MKKFRW that is predominantly present in the signal sequence of the bacterial protein MgrB, a highly conserved regulator of virulence and antibiotic resistance in Enterobacteriaceae. MgrB peptide can be produced and secreted by bacteria, and is selectively recognized by a subset of VSNs. Exposure to the peptide also stimulates VSNs in freely behaving mice and drives innate avoidance. Our data shows that Fpr3 is required for neuronal detection and avoidance of peptides derived from a conserved master virulence regulator of enteric bacteria.
fIn Staphylococcus aureus, metabolism is intimately linked with virulence determinant biosynthesis, and several metabolite-responsive regulators have been reported to mediate this linkage. S. aureus possesses at least three members of the RpiR family of transcriptional regulators. Of the three RpiR homologs, RpiRc is a potential regulator of the pentose phosphate pathway, which also regulates RNAIII levels. RNAIII is the regulatory RNA of the agr quorum-sensing system that controls virulence determinant synthesis. The effect of RpiRc on RNAIII likely involves other regulators, as the regulators that bind the RNAIII promoter have been intensely studied. To determine which regulators might bridge the gap between RpiRc and RNAIII, sarA, sigB, mgrA, and acnA mutations were introduced into an rpiRc mutant background, and the effects on RNAIII were determined. Additionally, phenotypic and genotypic differences were examined in the single and double mutant strains, and the virulence of select strains was examined using two different murine infection models. The data suggest that RpiRc affects RNAIII transcription and the synthesis of virulence determinants in concert with B , SarA, and the bacterial metabolic status to negatively affect virulence. Staphylococcus aureus is a major human pathogen causing a diverse range of infections, from superficial skin and wound infections to life-threatening diseases such as bacteremia, endocarditis, osteomyelitis, deep tissue abscesses, or pneumonia (1). The pathogenicity of S. aureus is due in part to its ability to produce a large number of virulence determinants, including secreted proteins (e.g., toxins and proteases), cell wall-associated proteins (e.g., protein A and fibronectin binding proteins), and extracellular polysaccharides (i.e., capsule and polysaccharide intercellular adhesion). During colonization and infection of a host, S. aureus must adapt to rapidly changing environmental and nutritional conditions by coordinating the transcription and translation of physiologic and virulence genes (2). To coordinately control these cellular processes, S. aureus has evolved or acquired a network of regulators such as the recently identified family of proteins, RpiR, that affect pentose phosphate pathway activity and virulence determinant synthesis (3).Central to the regulatory network is the accessory gene regulator (Agr) system, a regulator of virulence determinant synthesis that responds to the bacterial population density (4). The agr locus consists of two divergent transcriptional units, RNAII and RNAIII, driven by the P2 and P3 promoters, respectively. RNAII comprises the agrBDCA operon, of which the agrBD gene products are involved in the synthesis, transport, and maturation of an autoinducing peptide (AIP). As the cell density increases, AIP accumulates in the extracellular milieu and when a threshold is achieved the two-component system AgrCA responds by activating transcription of both P2 and P3 promoters. The P3 promoter drives transcription of RNAIII, which is the re...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.