Background
Hops (Humulus lupulus (L.)) dietary supplements are of interest as herbal remedies to alleviate menopausal symptoms, such as hot flushes, depression and anxiety. So far, the evidence regarding estrogenic and related properties of hops preparations has been considered insufficient for a market authorization for menopausal indications.
Purpose
The study aims to investigate a chemically standardized hops extract regarding its safety in the uterus, as wells as its efficacy to prevent bone loss in the ovariectomized rat model.
Study Design/Methods
Female Wistar rats were ovariectomized and divided into a control group receiving phytoestrogen-free diet, a group treated with E2benzoate (0.93 mg/kg body weight/d) and a group treated with the standardized hops extract (60 mg/kg body weight/d) for 8 weeks. Micro-computed tomography of the tibiae and vertebrae, as wells as histological changes in the uterus and tibia were analyzed.
Results
Neither uterotrophic nor proliferative effects were observed in the endometrium in response to the oral 8-week administration of the hops extract. However, site-dependent skeletal effects were observed. The hops extract significantly decreased the number of osteoclasts in the tibial metaphysis and prevented reduction of the trabecular thickness that resulted from estradiol depletion. In contrast, the hops extract did not prevent the ovariectomy-induced micro-architectural changes in the lumbar vertebra. Certain parameters (e.g. thickness and number of trabeculae) were even found to be below the values determined in the ovariectomized control group.
Conclusion
Taken together, the results provide evidence for the safety of the standardized hops extract and point to a weak bone type-specific, protective effect on bone loss following estradiol depletion.
The role of microRNAs (miRNA) in estrogen receptor (ER) signaling in the uterus and in endometrial cancer is not well understood. We therefore analyzed miRNA expression in uterine samples from a standard 3-day uterotrophic assay using young female adult rats to identify E2-regulated miRNAs. Microarray analysis identified 47 E2 down-regulated miRNAs including miR-30a, and 25 E2up-regulated miRNAs including miR-672, miR-203, and miR-146b. The strongly E2-upregulated miR-203 was selected for further analysis. miR-203 was deleted in the rat endometrial adenocarcinoma cell line, RUCA-I, using CRISPR/CAS9. Five clones devoid of miR-203 expression were generated. Proliferation was reduced and G2-arrest was observed in all miR-203 deficient RUCA-I clones. Transfection with a miR-203-3p mimic partially rescues this effect. Comparison of mRNA expression in three miR-203 knockout clones to wild type RUCA-I cells reveals 566 miR-203-upregulated and 592 miR-203-downregulated genes. 43 of the genes that are upregulated by miR-203 knockout in vitro are downregulated in the uterus by E2. Of these Acer2, Zbtb20, Ptn, Rcbtb2, Mum1l1, Hmgn3, and Nfat5 possess one or more seed sequence matches in their 3'-UTR that are predicted to be targets of miR-203. These data demonstrate the importance of E2 regulated miRNAs in general, and miR-203 in particular, for E2 regulated gene expression and physiological processes including proliferation and cell migration, in the uterus as well as in the etiology of endometrial carcinomas.
Background:Cross-talk between the aryl hydrocarbon receptor (AHR) and the estrogen receptor (ER) plays a major role in signaling processes in female reproductive organs.Objectives:We investigated the influence of the AHR ligand 3-methylcholanthrene (3-MC) on ER-mediated signaling in mammary gland tissue of ovariectomized (ovx) rats.Methods:After 14 days of hormonal decline, ovx rats were treated for 3 days with 4 μg/kg 17β-estradiol (E2), 15 mg/kg 8-prenylnaringenin (8-PN), 15 mg/kg 3-MC, or a combination of these compounds (E2 + 3-MC, 8-PN + 3-MC). Whole-mount preparations of the mammary gland were used to count terminal end buds (TEBs). Protein expression studies (immunohistochemistry, immunofluorescence), a cDNA microarray, pathway analyses, and quantitative real-time polymerase chain reaction (qPCR) were performed to evaluate the interaction between AHR- and ER-mediated signaling pathways.Results:E2 treatment increased the number of TEBs and the levels of Ki-67 protein and progesterone receptor (PR); this treatment also changed the expression of 325 genes by more than 1.5-fold. Although 3-MC treatment alone had marginal impact on gene or protein expression, when rats were co-treated with 3-MC and E2, 3-MC strongly inhibited E2-induced TEB development, protein synthesis, and the expression of nearly half of E2-induced genes. This inhibitory effect of 3-MC was partially mirrored when 8-PN was used as an ER ligand. The anti-estrogenicity of ligand-activated AHR was at least partly due to decreased protein levels of ERα in ductal epithelial cells.Conclusion:Our data show transcriptome-wide anti-estrogenic properties of ligand-activated AHR on ER-mediated processes in the mammary gland, thereby contributing an explanation for the chemopreventive and endocrine-disrupting potential of AHR ligands.Citation:Helle J, Bader MI, Keiler AM, Zierau O, Vollmer G, Chittur SV, Tenniswood M, Kretzschmar G. 2016. Cross-talk in the female rat mammary gland: influence of aryl hydrocarbon receptor on estrogen receptor signaling. Environ Health Perspect 124:601–610; http://dx.doi.org/10.1289/ehp.1509680
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.