Abstract:The present paper aims to introduce the current problems of geomathematics along with giving on overview on the papers published in the special issue covering the Croatian-Hungarian Geomathematical Congress of 2015 in Hungary.
This study demonstrates a method to identify and characterize some facies of turbiditic depositional environments. The study area is a hydrocarbon field in the Sava Depression (Northern Croatia). Its Upper Miocene reservoirs have been proved to represent a lacustrine turbidite system. In the workflow, first an unsupervised neural network was applied as clustering method for two sandstone reservoirs. The elements of the input vectors were the basic petrophysical parameters. In the second step autocorrelation surfaces were used to reveal the hidden anisotropy of the grid. This anisotropy is supposed to identify the main continuity directions in the geometrical analyses of sandstone bodies. Finally, in the description of clusters several parametric and nonparametric statistics were used to characterize the identified facies. Obtained results correspond to the previously published interpretation of those reservoir facies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.