In the liquid composite moulding (LCM) process, fabric is draped over the mould surface and a resin is injected under pressure to develop a composite laminate. Wrinkling is one of the most common flaws that occurs during the draping of the fabric. Wrinkling of the fabric within the composite could severely reduce the quality of the finished composite laminate. Thus, to develop a high-quality composite laminate, exact prediction of fabric wrinkling behaviour is necessary. The aim of the paper is to investigate the draping behaviour of carbon fabric. Carbon fabric with an areal density of 245 g/m2 is used in the study. Both experimental and numerical investigations were performed. An experimental setup was developed to predict the draping behaviour of the carbon fabric used in the study. LS-DYNA/Explicit solver is used to achieve macro level draping simulation. Material model MAT_REINFORCED_THERMOPLASTIC [MAT_249] offers the possibility to simulate the forming behaviour of a thermoplastic material. To simulate dry fabrics using MAT_249, a very low properties are used for the matrix in the material model. To capture the forming behaviour of fabric, an intensive material characterization has been performed. Tensile and shear properties of the fabrics were determined using uniaxial and picture frame tests, respectively. Influence of the position of the integration points from the mid surface on bending behaviour is studied and calibrated using a simple test.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.