The paper discusses the connectivity of periodic and preperiodic domains in the stable set in the iteration of a meromorphic function. The connectivity of an invariant component has one of the values 1, 2, ∞. Examples are constructed to show that the connectivity of a preperiodic component may take any value.
For functions meromorphic in the plane, apart from an exceptional case, the Julia set J is the closure of the set of all preimages of poles. The repelling periodic cycles are dense in J. In contrast with the case of transcendental entire functions, J may be a subset of a straight line and general classes of functions for which this is the case can be determined. J may also lie on a quasicircle through infinity which is not a straight line.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.