This paper presents an algorithm for localizing an unmanned aerial vehicle (UAV) in GPS denied environments. Localization is performed with respect to a pre-built map of the environment represented using the distance function of a binary mosaic, avoiding the need for extraction and explicit matching of visual features. Edges extracted from images acquired by an on-board camera are projected to the map to compute an error metric that indicates the misalignment between the predicted and true pose of the UAV. A constrained extended Kalman filter (EKF) framework is used to generate an estimate of the full 6-DOF location of the UAV by enforcing the condition that the distance function values are zero when there is no misalignment. Use of an EKF also makes it possible to seamlessly incorporate information from any other system on the UAV, for example, from its auto-pilot, a height sensor or an optical flow sensor. Experiments using a hexarotor UAV both in a simulation environment and in the field are presented to demonstrate the effectiveness of the proposed algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.