TitleStructure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases active, two subunits of these zinc finger nucleases (ZFN) are typically assembled at the 5 cleavage site. Presumably due to cleavage at off-target sites, the use of ZFNs is often associated with significant cytotoxicity. Here, we describe a structure-based approach to reduce ZFN-induced toxicity. Rational redesign of the FokI dimer interface aiming at destabilizing dimerization in combination with preventing homodimerization of the ZFN subunits was based on protein modeling and energy calculations. Cell-based recombination 10 assays confirmed that the modified ZFNs elicit significantly reduced cytotoxicity without compromising on performance. Our results present a critical step towards the therapeutic application of the ZFN technology.
BackgroundVascular calcification (VC) is prevalent in patients suffering from chronic kidney disease. Factors promoting calcification include abnormalities in mineral metabolism, particularly high phosphate levels. Inorganic phosphate (Pi) is a classical inducer of in vitro VC. Recently, an inverse relationship between serum magnesium concentrations and VC has been reported. The present study aimed to investigate the effects of magnesium on Pi-induced VC at the cellular level using primary HAVSMC.MethodsAlive and fixed HAVSMC were assessed during 14 days in the presence of Pi with increasing concentrations of magnesium (Mg2+) chloride. Mineralization was measured using quantification of calcium, von Kossa and alizarin red stainings. Cell viability and secretion of classical VC markers were also assessed using adequate tests. Involvement of transient receptor potential melastatin (TRPM) 7 was assessed using 2-aminoethoxy-diphenylborate (2-APB) inhibitor.ResultsCo-incubation with Mg2+ significantly decreased Pi-induced VC in live HAVSMC, no effect was found in fixed cells. At potent concentrations in Pi-induced HAVSMC, Mg2+ significantly improved cell viability and restored to basal level increased secretions of osteocalcin and matrix gla protein, whereas a decrease in osteopontin secretion was partially restored. The block of TRPM7 with 2-APB at 10−4 M led to the inefficiency of Mg2+ to prevent VC.ConclusionsIncreasing Mg2+ concentrations significantly reduced VC, improved cell viability and modulated secretion of VC markers during cell-mediated matrix mineralization clearly pointing to a cellular role for Mg2+ and 2-APB further involved TRPM7 and a potential Mg2+ entry to exert its effects. Further investigations are needed to shed light on additional cellular mechanism(s) by which Mg2+ is able to prevent VC.
Magnesium reduces vascular smooth muscle cell (VSMC) calcification in vitro but the mechanism has not been revealed so far. This work used only slightly increased magnesium levels and aimed at determining: a) whether inhibition of magnesium transport into the cell influences VSMC calcification, b) whether Wnt/β-catenin signaling, a key mediator of osteogenic differentiation, is modified by magnesium and c) whether magnesium can influence already established vascular calcification. Human VSMC incubated with high phosphate (3.3 mM) and moderately elevated magnesium (1.4 mM) significantly reduced VSMC calcification and expression of the osteogenic transcription factors Cbfa-1 and osterix, and up-regulated expression of the natural calcification inhibitors matrix Gla protein (MGP) and osteoprotegerin (OPG). The protective effects of magnesium on calcification and expression of osteogenic markers were no longer observed in VSMC cultured with an inhibitor of cellular magnesium transport (2-aminoethoxy-diphenylborate [2-APB]). High phosphate induced activation of Wnt/β-catenin pathway as demonstrated by the translocation of β-catenin into the nucleus, increased expression of the frizzled-3 gene, and downregulation of Dkk-1 gene, a specific antagonist of the Wnt/β-catenin signaling pathway. The addition of magnesium however inhibited phosphate-induced activation of Wnt/β-catenin signaling pathway. Furthermore, TRPM7 silencing using siRNA resulted in activation of Wnt/β-catenin signaling pathway. Additional experiments were performed to test the ability of magnesium to halt the progression of already established VSMC calcification in vitro. The delayed addition of magnesium decreased calcium content, down-regulated Cbfa-1 and osterix and up-regulated MGP and OPG, when compared with a control group. This effect was not observed when 2-APB was added. In conclusion, magnesium transport through the cell membrane is important to inhibit VSMC calcification in vitro. Inhibition of Wnt/β-catenin by magnesium is one potential intracellular mechanism by which this anti-calcifying effect is achieved.
Despite suggestions that higher serum magnesium (Mg) levels are associated with improved outcome, the association with mortality in European hemodialysis (HD) patients has only scarcely been investigated. Furthermore, data on the association between serum Mg and sudden death in this patient group is limited. Therefore, we evaluated Mg in a post-hoc analysis using pooled data from the CONvective TRAnsport STudy (CONTRAST, NCT00205556), a randomized controlled trial (RCT) evaluating the survival risk in dialysis patients on hemodiafiltration (HDF) compared to HD with a mean follow-up of 3.1 years. Serum Mg was measured at baseline and 6, 12, 24 and 36 months thereafter. Cox proportional hazards models, adjusted for confounders using inverse probability weighting, were used to estimate hazard ratios (HRs) of baseline serum Mg on all-cause mortality, cardiovascular mortality, non-cardiovascular mortality and sudden death. A generalized linear mixed model was used to investigate Mg levels over time. Out of 714 randomized patients, a representative subset of 365 (51%) were analyzed in the present study. For every increase in baseline serum Mg of 0.1 mmol/L, the HR for all-cause mortality was 0.85 (95% CI 0.77–94), the HR for cardiovascular mortality 0.73 (95% CI 0.62–0.85) and for sudden death 0.76 (95% CI 0.62–0.93). These findings did not alter after extensive correction for potential confounders, including treatment modality. Importantly, no interaction was found between serum phosphate and serum Mg. Baseline serum Mg was not related to non-cardiovascular mortality. Mg decreased slightly but statistically significant over time (Δ -0.011 mmol/L/year, 95% CI -0.017 to -0.009, p = 0.03). In short, serum Mg has a strong, independent association with all-cause mortality, cardiovascular mortality and sudden death in European HD patients. Serum Mg levels decrease slightly over time.
BackgroundCardiovascular disease including vascular calcification (VC) remains the leading cause of death in patients suffering from chronic kidney disease (CKD). The process of VC seems likely to be a tightly regulated process where vascular smooth muscle cells are playing a key role rather than just a mere passive precipitation of calcium phosphate. Characterisation of the chemical and crystalline structure of VC was mainly led in patients or animal models with CKD. Likewise, Mg2+ was found to be protective in living cells although a potential role for Mg2+ could not be excluded on crystal formation and precipitation. In this study, the crystal formation and the role of Mg2+ were investigated in an in vitro model of primary human aortic vascular smooth muscle cells (HAVSMC) with physical techniques.Methodology/Principal FindingsIn HAVSMC incubated with increased Ca x Pi medium, only calcium phosphate apatite crystals (CPA) were detected by Micro-Fourier Transform InfraRed spectroscopy (µFTIR) and Field Effect Scanning Electron Microscope (FE — SEM) and Energy Dispersive X-ray spectrometry (EDX) at the cell layer level. Supplementation with Mg2+ did not alter the crystal composition or structure. The crystal deposition was preferentially positioned near or directly on cells as pictured by FE — SEM observations and EDX measurements. Large µFTIR maps revealed spots of CPA crystals that were associated to the cellular layout. This qualitative analysis suggests a potential beneficial effect of Mg2+ at 5 mM in noticeably reducing the number and intensities of CPA µFTIR spots.Conclusions/SignificanceFor the first time in a model of HAVSMC, induced calcification led to the formation of the sole CPA crystals. Our data seems to exclude a physicochemical role of Mg2+ in altering the CPA crystal growth, composition or structure. Furthermore, Mg2+ beneficial role in attenuating VC should be linked to an active cellular role.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.