We develop two new continuum contact models for coupled adhesion and friction, and discuss them in the context of existing models proposed in the literature. Our new models are able to describe sliding friction even under tensile normal forces, which seems reasonable for certain adhesion mechanisms. In contrast, existing continuum models for combined adhesion and friction typically include sliding friction only if local contact stresses are compressive. Although such models work well for structures with sufficiently strong local compression, they fail to capture sliding friction for soft and compliant systems (like adhesive pads), for which the resistance to bending is low. This can be overcome with our new models. For further motivation, we additionally present experimental results for the onset of sliding of a smooth glass plate on a smooth elastomer cap under low normal loads. As shown, the findings from these experiments agree well with the results from our models. In this paper we focus on the motivation and derivation of our continuum contact models, and provide a corresponding literature survey. Their implementation in a nonlinear finite element framework as well as the algorithmic treatment of adhesion and friction will be discussed in future work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.