The adenomatous polyposis coli (APC) tumour suppressor is a multifunctional protein involved in the regulation of Wnt signalling and cytoskeletal dynamics. Little is known about how APC controls these disparate functions. In this study, we have used APC-and axin-fluorescent fusion proteins to examine the interactions between these proteins and show that the functionally distinct populations of APC are also spatially separate. Axin-RFP forms cytoplasmic punctate structures, similar to endogenous axin puncta. Axin-RFP recruits b-catenin destruction complex proteins, including APC, b-catenin, glycogen synthase kinase-3-b (GSK3-b) and casein kinase-1-a (CK1-a). Recruitment into axin-RFP puncta sequesters APC from clusters at cell extensions and this prevents its microtubule-associated functions. The interaction between APC-GFP and axin-RFP within the cytoplasmic puncta is direct and dramatically alters the dynamic properties of APC-GFP. However, recruitment of APC to axin puncta is not absolutely required for b-catenin degradation. Instead, formation of axin puncta, mediated by the DIX domain, is required for b-catenin degradation. An axinDDIX mutant did not form puncta, but still mediated recruitment of destruction complex proteins and phosphorylation of b-catenin. We conclude that there are distinct pools of APC and that the formation of axin puncta, rather than the axin/APC complex, is essential for b-catenin destruction.
Splicing is an essential step in eukaryotic gene expression. While the majority of introns is excised by the U2-dependent, or major class, spliceosome, the appropriate expression of a very small subset of genes depends on U12-dependent, or minor class, splicing. The U11/U12 65K protein (hereafter 65K), encoded by RNPC3, is one of seven proteins that are unique to the U12-dependent spliceosome, and previous studies including our own have established that it plays a role in plant and vertebrate development. To pinpoint the impact of 65K loss during mammalian development and in adulthood, we generated germline and conditional Rnpc3-deficient mice. Homozygous Rnpc3 −/− embryos died prior to blastocyst implantation, whereas Rnpc3 +/− mice were born at the expected frequency, achieved sexual maturity, and exhibited a completely normal lifespan. Systemic recombination of conditional Rnpc3 alleles in adult (Rnpc3 lox/lox ) mice caused rapid weight loss, leukopenia, and degeneration of the epithelial lining of the entire gastrointestinal tract, the latter due to increased cell death and a reduction in cell proliferation. Accompanying this, we observed a loss of both 65K and the pro-proliferative phospho-ERK1/2 proteins from the stem/progenitor cells at the base of intestinal crypts. RT-PCR analysis of RNA extracted from purified preparations of intestinal epithelial cells with recombined Rnpc3 lox alleles revealed increased frequency of U12-type intron retention in all transcripts tested. Our study, using a novel conditional mouse model of Rnpc3 deficiency, establishes that U12-dependent splicing is not only important during development but is indispensable throughout life.
BackgroundThe APC tumour suppressor functions in several cellular processes including the regulation of β-catenin in Wnt signalling and in cell adhesion and migration.FindingsIn this study, we establish that in epithelial cells N-terminally phosphorylated β-catenin specifically localises to several subcellular sites including cell-cell contacts and the ends of cell protrusions. N-terminally phosphorylated β-catenin associates with E-cadherin at adherens junctions and with APC in cell protrusions. We isolated APC-rich protrusions from stimulated cells and detected β-catenin, GSK3β and CK1α, but not axin. The APC/phospho-β-catenin complex in cell protrusions appears to be distinct from the APC/axin/β-catenin destruction complex. GSK3β phosphorylates the APC-associated population of β-catenin, but not the cell junction population. β-catenin associated with APC is rapidly phosphorylated and dephosphorylated. HGF and wound-induced cell migration promote the localised accumulation of APC and phosphorylated β-catenin at the leading edge of migrating cells. APC siRNA and analysis of colon cancer cell lines show that functional APC is required for localised phospho-β-catenin accumulation in cell protrusions.ConclusionsWe conclude that N-terminal phosphorylation of β-catenin does not necessarily lead to its degradation but instead marks distinct functions, such as cell migration and/or adhesion processes. Localised regulation of APC-phospho-β-catenin complexes may contribute to the tumour suppressor activity of APC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.