Epithelial cell survival is dependent on extracellular signals provided by both soluble factors and by adhesion. In the mammary gland, extensive apoptosis of epithelial cells occurs rapidly when lactation ceases, but the mechanism of apoptosis induction is not known. In tissue culture, mammary epithelial cells require laminin as a survival ligand and specific 1 integrins are necessary to suppress apoptosis. To explore the possibility that dynamic changes in cell-matrix interactions contribute to the onset of apoptosis during mammary involution in vivo, a detailed immunohistochemical analysis of the expression of integrin subunits and their extracellular matrix ligands during mouse mammary gland development has been performed. The kinetics of apoptosis were determined by using tissue samples obtained from virgin, pregnant, lactating, and involuting gland. The maximal elevation of apoptosis occurred within 24 hr of weaning as determined by histologic analysis and caspase-3 staining. A wide variety of laminin subunits, together with nidogen-1 and -2, and perlecan were identified within the basement membrane region of epithelial ducts, lobules, and alveoli in both human and mouse mammary gland. However, no change in the distribution of any of the basement membrane proteins or their cognate integrin receptors was observed during the transition from lactation to apoptosis. Instead, we discovered that altered ligand-binding conformation of the 1 integrin to a nonbinding state coincided with the immediate onset of mammary apoptosis. This finding may provide a novel dynamic mechanism for inhibiting the transduction of extracellular matrix survival signals, thereby contributing to the onset of apoptosis in a developmental context in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.