Peripheral tolerance is required to prevent autoimmune tissue destruction by self-reactive T cells that escape negative selection in the thymus. One mechanism of peripheral tolerance in CD8+ T cells is their activation by resting dendritic cells (DC). In contrast, DC can be “licensed” by CD4+ T cells to induce cytotoxic function in CD8+ T cells. The question that then arises, whether CD4+ T cell help could impair peripheral tolerance induction in self-reactive CD8+ T cells, has not been addressed. In this study we show that CD4+ T cell activation by resting DC results in helper function that transiently promotes the expansion and differentiation of cognate CD8+ T cells. However, both the CD4+ and CD8+ T cell populations ultimately undergo partial deletion and acquire Ag unresponsiveness, disabling their ability to destroy OVA-expressing pancreatic β cells and cause diabetes. Thus, effective peripheral tolerance can be induced by resting DC in the presence of CD4+ and CD8+ T cells with specificity for the same Ag.
Bone marrow or hematopoietic stem cell transplantation is a potential treatment for autoimmune disease. The clinical application of this approach is, however, limited by the risks associated with allogeneic transplantation. In contrast, syngeneic transplantation would be safe and have wide clinical application. Because T cell tolerance can be induced by presenting antigen on resting antigen-presenting cells (APCs), we reasoned that hematopoietic stem cells engineered to express autoantigen in resting APCs could be used to prevent autoimmune disease. Proinsulin is a major autoantigen associated with pancreatic beta cell destruction in humans with type 1 diabetes (T1D) and in autoimmune NOD mice. Here, we demonstrate that syngeneic transplantation of hematopoietic stem cells encoding proinsulin transgenically targeted to APCs totally prevents the development of spontaneous autoimmune diabetes in NOD mice. This antigen-specific immunotherapeutic strategy could be applied to prevent T1D and other autoimmune diseases in humans.
Aberrant dendritic cell (DC) development and function may contribute to autoimmune disease susceptibility. To address this hypothesis at the level of myeloid lineage-derived DC we compared the development of DC from bone marrow progenitors in vitro and DC populations in vivo in autoimmune diabetes-prone nonobese diabetic (NOD) mice, recombinant congenic nonobese diabetes-resistant (NOR) mice, and unrelated BALB/c and C57BL/6 (BL/6) mice. In GM-CSF/IL-4-supplemented bone marrow cultures, DC developed in significantly greater numbers from NOD than from NOR, BALB/c, and BL/6 mice. Likewise, DC developed in greater numbers from sorted (lineage−IL-7Rα−SCA-1−c-kit+) NOD myeloid progenitors in either GM-CSF/IL-4 or GM-CSF/stem cell factor (SCF)/TNF-α. [3H]TdR incorporation indicated that the increased generation of NOD DC was due to higher levels of myeloid progenitor proliferation. Generation of DC with the early-acting hematopoietic growth factor, flt3 ligand, revealed that while the increased DC-generative capacity of myeloid-committed progenitors was restricted to NOD cells, early lineage-uncommitted progenitors from both NOD and NOR had increased DC-generative capacity relative to BALB/c and BL/6. Consistent with these findings, NOD and NOR mice had increased numbers of DC in blood and thymus and NOD had an increased proportion of the putative myeloid DC (CD11c+CD11b+) subset within spleen. These findings demonstrate that diabetes-prone NOD mice exhibit a myeloid lineage-specific increase in DC generative capacity relative to diabetes-resistant recombinant congenic NOR mice. We propose that an imbalance favoring development of DC from myeloid-committed progenitors predisposes to autoimmune disease in NOD mice.
The nature of the T-cell response to antigen is governed by the activation state of the antigen-presenting dendritic cell (DC). Immature or resting DCs have been shown to induce T-cell responses that may protect against the development of autoimmune disease. Effectively harnessing this "tolerogenic" effect of resting DCs requires that it be disease-specific and that activation of DCs by manipulation ex vivo is avoided. We reasoned that this could be achieved by transferring in vivo partially differentiated myeloid progenitor cells encoding a disease-specific autoantigen. With the aim of preventing autoimmune diabetes, we transferred myeloid progenitor cells encoding proinsulin into NOD mice. Bone marrow (BM) was cultured in granulocyte macrophage colony-stimulating factor (GM-CSF) and transforming growth factor-1, a cytokine combination that expands myeloid cells but inhibits terminal DC differentiation, to yield Gr-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.