Phosphorylation is a universal mechanism for regulating cell behavior in eukaryotes. Although protein kinases are known to target short linear sequence motifs on their substrates, the rules for kinase substrate recognition are not completely understood. We used a rapid peptide screening approach to determine consensus phosphorylation site motifs targeted by 61 of the 122 kinases in Saccharomyces cerevisae. Correlation of these motifs with kinase primary sequence has uncovered previously unappreciated rules for determining specificity within the kinase family, including a residue determining P−3 Arg specificity among members of the CMGC group of kinases. Furthermore, computational scanning of the yeast proteome enabled the prediction of thousands of new kinase-substrate relationships. We experimentally verified several candidate substrates of the Prk1 family of kinases in vitro and in vivo, and we identified a protein substrate of the kinase Vhs1. Together, these results elucidate how kinase catalytic domains recognize their phosphorylation targets and suggest general avenues for the identification of new kinase substrates across eukaryotes.
Inflammatory pain, characterized by a decrease in mechanical nociceptive threshold (hyperalgesia), arises through actions of inflammatory mediators, many of which sensitize primary afferent nociceptors via G-protein-coupled receptors. Two signaling pathways, one involving protein kinase A (PKA) and one involving the epsilon isozyme of protein kinase C (PKCepsilon), have been implicated in primary afferent nociceptor sensitization. Here we describe a third, independent pathway that involves activation of extracellular signal-regulated kinases (ERKs) 1 and 2. Epinephrine, which induces hyperalgesia by direct action at beta(2)-adrenergic receptors on primary afferent nociceptors, stimulated phosphorylation of ERK1/2 in cultured rat dorsal root ganglion cells. This was inhibited by a beta(2)-adrenergic receptor blocker and by an inhibitor of mitogen and extracellular signal-regulated kinase kinase (MEK), which phosphorylates and activates ERK1/2. Inhibitors of G(i/o)-proteins, Ras farnesyltransferases, and MEK decreased epinephrine-induced hyper-algesia. In a similar manner, phosphorylation of ERK1/2 was also decreased by these inhibitors. Local injection of dominant active MEK produced hyperalgesia that was unaffected by PKA or PKCepsilon inhibitors. Conversely, hyperalgesia produced by agents that activate PKA or PKCepsilon was unaffected by MEK inhibitors. We conclude that a Ras-MEK-ERK1/2 cascade acts independent of PKA or PKCepsilon as a novel signaling pathway for the production of inflammatory pain. This pathway may present a target for a new class of analgesic agents.
Global studies of the human proteome have revealed a plethora of putative protein biomarkers. However, their application for early disease detection remains at a standstill without suitable methods to realize their utility in the clinical setting. There thus continues to be tremendous interest in developing new technology for sensitive protein detection that is both low in cost and carries a small footprint to be able to be used at the point of care. The current gold standard method for protein biomarker detection is the ELISA, which measures protein abundance using bulky fluorescent scanners that lack portability. Here, we present a digital microfluidic platform for protein biomarker detection that is low in cost compared with standard optical detection methods, without any compromise in sensitivity. This platform furthermore makes use of simple electronics, enabling its translation into a portable handheld device, and has been developed in a manner that can easily be adapted to assay different types of proteomic biomarkers. We demonstrate its utility in quantifying not only protein abundance, but also activity. Interleukin-6 abundance could be assayed from concentrations as low as 50 pM (an order of magnitude lower than that detectable by a comparable laboratory designed ELISA) using less than 5 μL of sample, and Abelson tyrosine kinase activity was detectable in samples containing 100 pM of kinase.biosensor | decoupled architecture | bead-based assay R ecent decades of research have shown that the molecular mechanisms underlying human disease are much more complex than originally appreciated, with one or more rare genetic events often playing key roles in the transformation of a normal cell into a diseased cell. Not surprisingly, the diagnosis and treatment of many human diseases continue to struggle from the use of simplified models that are based on a handful of highly expressed biomarkers. Thanks to recent advances in microarray and next-generation sequencing technologies, a steadily increasing number of complete genomes have been sequenced, and considerable progress has been made using genomic biomarkers to better personalize healthcare. However, the ability to provide complete personalized healthcare demands the ability to monitor genetic biomarkers as well as protein biomarkers, and the development of proteomic technologies suitable for analyzing human samples has lagged considerably behind.To be well suited as a clinical diagnostic, a proteomic technology must be sensitive enough to detect endogenous levels of low abundance proteins, require low sample volumes, have a short assay time, and ideally be portable as to allow informed treatment decisions to be made at the point of care. Microfluidics, with its inherent advantages of low sample and reagent volumes, multiplex and automated capabilities, and precise control over the microenvironment, has emerged as a promising operation platform with which to develop sensitive proteomic technologies. Several groups have used microfluidic sandwich immunoassays ...
SUMMARY We describe a protocol for the global identification of the in vitro substrates targeted by protein kinases using protein microarray technology. Large numbers of fusion proteins TAP-tagged at their carboxy-termini are purified in 96-well format and spotted in duplicate onto amino-silane coated slides in a spatially addressable manner. These arrays are incubated in the presence of purified kinase and radiolabeled ATP, and then washed, dried, and analyzed by autoradiography. The extent of phosphorylation of each spot is quantified and normalized, and proteins that are reproducibly phosphorylated in the presence of the active kinase relative to control slides are scored as positive substrates. This approach enables the rapid determination of kinase-substrate relationships on a proteome-wide scale, and although developed for yeast, has since been adapted to higher eukaryotic systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.