Background Swine inflammation and necrosis syndrome (SINS) is a newly identified syndrome in swine that can affect different parts of the extremities in suckling piglets. This study investigates the hypotheses that the clinical signs of SINS have histological equivalents, that SINS can also be observed in weaners and fatteners, that improving sow quality and husbandry (here the supply of water and fibre) can reduce the signs, and that coprostasis in sows is significantly associated with SINS in their offspring. From a cohort of 123 hybrid sows, the twenty sows exhibiting the best conditions and the twenty exhibiting the worst conditions were selected based on detailed scores from coronary bands, soles, heels, claws and teats. Half of the sows in each group, along with their offspring, were kept under conventional conditions, while the environment for the remaining sows in each group was improved with drinking bowls, water disinfection and additional feeding with hay and straw. In total, 115 suckling piglets, 113 weaners and 103 fatteners were scored for the degree of inflammation and necrosis of their tails, ears, teats, coronary bands, soles, heels and claws. Results The clinical signs of SINS are associated with inflammatory signs at the histological level. SINS scores in suckling piglets, weaners and fatteners derived from low-quality sows under standard husbandry conditions were high, but they decreased significantly when husbandry was improved (water consumption and additional fibre). Sow quality had significant effects on suckling piglets and weaners under standard husbandry conditions. Coprostasis in sows led to significantly higher SINS scores in their offspring at any age. Improved husbandry conditions were associated with a reduced prevalence of coprostasis (R2 = 0.74). Taking all factors together, husbandry improvements, sow quality and coprostasis explained 57, 67 and 45% of SINS score variance in suckling piglets, weaners and fatteners, respectively. Conclusion The present study shows that SINS is not limited to suckling piglets but can also be found in weaners and fatteners. Coprostasis in sows is significantly correlated with SINS in their offspring and adds a good prognostic tool. Water supply and fibre could play a crucial role in combatting the syndrome.
Sows were fed naturally contaminated diets containing: (i) 100 ppb zearalenone (ZEN) one week before farrowing and during the lactation period (at 26 days), (ii) 100 ppb ZEN one week before farrowing and 300 ppb ZEN during the lactation period, or (iii) 300 ppb ZEN one week before farrowing and during the lactation period. All diets contained 250 ppb deoxynivalenol (DON). The highest levels of ZEN, α-ZEL, or β-ZEL were observed in the serum of sows fed 300 ppb ZEN before farrowing and during lactation. However, only α-ZEL was significantly increased in the colostrum and milk of these sows. Sows fed the 300 ppb ZEN during the complete trial presented a significant decrease in backfat thickness before farrowing. This effect was accompanied by a decrease in serum leptin levels. These sows also presented a decrease in estradiol levels and this effect was observed in their piglets exposed during lactation, which presented increased glucagon-like peptide 1, but no changes in serum levels of ZEN, α-ZEL, or β-ZEL. Although all sows were fed the same levels of DON, the serum levels of DON and de-epoxy-DON were increased only in the serum of piglets from the sows fed a diet with the highest ZEN levels during the whole experimental period. Moreover, these piglets presented gut inflammation, as indicated by significantly increased calprotectin levels in their serum.
This is a repository copy of Preliminary study on the relationship between aflatoxin-bovine serum albumin adducts in blood and aflatoxin M1 levels in milk of dairy cows.
A 10-week feeding experiment was carried out examining the effects of deoxynivalenol (DON)-contaminated maize treated with different sodium sulphite (SoS) concentrations on performance, health and DON-plasma concentrations in fattening pigs. Two maize batches were used: background-contaminated (CON, 0.73 mg/kg maize) and Fusarium-toxin contaminated (DON, 44.45 mg/kg maize) maize. Both were wet preserved at 20% moisture content, with one of three (0.0, 2.5, 5.0 g/kg maize) sodium sulphite concentrations and propionic acid (15%). Each maize batch was then mixed into a barley-wheat-based diet at a proportion of 10%, resulting in the following 6 feeding groups: CON− (CON + 0.0 g SoS/kg maize), CON2.5 (CON + 2.5 g SoS/ kg maize), CON5.0 (CON + 5.0 g SoS/kg maize), DON-(DON + 0.0 g SoS/kg maize), DON2.5 (DON + 2.5 g SoS/kg maize) and DON5.0 (DON + 5.0 g SoS/kg maize). Dietary DON concentration was reduced by~36% in group DON2.5 and~63% in group DON5.0. There was no impact on ZEN concentration in the diets due to SoS treatment. Pigs receiving diet DON-showed markedly lower feed intake (FI) compared to those fed the control diets. With SoS-treatment of maize, FI of pigs fed the DON diet (DON5.0: 3.35 kg/d) were comparable to that control (CON−: 3.30 kg/day), and these effects were also reflected in live weight gain. There were some effects of SoS, DON or their interaction on serum urea, cholesterol and albumin, but always within the physiological range and thus likely negligible. SoS wet preservation of Fusarium-toxin contaminated maize successfully detoxified DON to its innocuous sulfonates, thus restoring impaired performance in fatteners.
Mycotoxin contaminated feed has been associated with colic of horses caused by intestinal disorders. Whether such disease conditions alter the intestinal toxin metabolism and transfer across a compromised mucosal barrier is unknown. A screening approach was used to relate blood residue levels of DON, ZEN and their metabolites to the status of the horses (sick vs. healthy). A total of 55 clinically healthy horses from 6 different farms with varying feeding background served as control for sick horses (N = 102) hospitalized due to colic. ZEN, alpha-zearalenol (ZEL), beta-ZEL and DON were detectable in peripheral blood as indicators for the inner exposure with significant farm effects for alpha- and beta-ZEL. However, the levels in sick horses were similar to all farms. Moreover, the proportion of beta-ZEL of all detected ZEN metabolites as an indicator for the degree of metabolism of ZEN was not different for sick horses but differed amongst the control farms. Although the incidence of DON in blood was generally low and not significantly different amongst healthy and sick horses, the positive samples were nearly exclusively found in sick horses suggesting either a higher toxin transfer, an association of DON with the development of colic or a different feeding background.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.