Mutations in the paraplegin gene are not a common cause of HSP in the northeast of England. The phenotype of the paraplegin-related HSP family described had several striking features including amyotrophy, raised creatine kinase, sensorimotor peripheral neuropathy, and oxidative phosphorylation defect on muscle biopsy.
Molecular pathology has identified 2 distinct forms of neuronal inclusion body in Amyotrophic Lateral Sclerosis (ALS). ALS-type inclusions are skeins or small dense filamentous aggregates which can only be demonstrated by ubiquitin immunocytochemistry (ICC). In contrast hyaline conglomerates (HC) are large multifocal accumulations of neurofilaments. Previous reports have failed to clarify the distinction and relationship between these inclusions. Correlation of molecular pathology with sporadic and familial cases of ALS will detect specific associations between molecular lesions and defined genetic abnormalities; and determine the relevance of molecular events in familial cases to the pathogenesis of sporadic disease. We describe the molecular pathology of 5 ALS cases linked to abnormalities of the SOD1 gene, in comparison with a series of 73 sporadic cases in which SOD1-gene abnormalities were excluded. Hyaline conglomerate inclusions were detected only in the 2 cases with the SOD1 I113T mutation and showed a widespread multisystem distribution. In contrast ALS-type inclusions characterized sporadic cases (70/73) and were restricted to lower motor neurons. Hyaline conglomerates were not seen in sproadic cases. Confocal microscopic analysis and ICC shows that HC contain equally abundant phosphorylated and nonphosphorylated neurofilament epitopes, indicating that phosphorylation is not essential for their formation. In contrast neurofilament immunoreactivity is virtually absent from typical ALS-type inclusions. The SOD1-related cases all had marked corticospinal tract and dorsal column myelin loss. In 4 cases the motor cortex was normal or only minimally affected. This further illustrates the extent to which upper motor neuron damage in ALS is usually a distal axonopathy. Previously reported pathological accounts of SOD1-related familial ALS (FALS) are reviewed. Hyaline conglomerates are so far described in cases with mutations A4V, I113T and H48Q. In only 1 of 12 cases (H48Q) reported were both HC and ALS-type inclusions present in the same case. These findings suggest the possibility that the molecular pathology of neuronal inclusions in ALS indicates 2 distinct pathogenetic cascades.
The abnormal assembly and accumulation of neurofilaments (NF) in the perikarya and proximal axons of motor neurones is a characteristic of ALS. Deletions in the KSP repeat region of the NF-H gene have previously been reported in seven patients with sporadic ALS. Here we report the identification of a novel 84 bp insertion in the NF-H gene. This leads to an extra four KSP repeat elements in a highly conserved repetitive region of the gene. Although neurofilament mutations are only associated with a very small proportion of ALS cases, this insertion provides further support of a role for neurofilaments in the pathogenesis of ALS.
The expanding molecular database provides unparalleled opportunities for characterizing genes and for studying groups of related genes. We use sequences drawn from the database to construct an evolutionary framework for examining the important glycolytic enzyme phosphoglucomutase (PGM). Phosphoglucomutase plays a pivotal role in the synthesis and utilization of glycogen and is present in all organisms. In humans, there are three well-described isozymes, PGMI, PGM2, and PGM3. PGM1 was cloned 5 years ago; however, repeated attempts using both immunological approaches and molecular probes designed from PGM1 have failed to isolate either PGM2 or PGM3. Using a phylogenetic strategy, we first identified 47 highly divergent prokaryotic and eukaryotic PGM-like sequences from the database. Although overall amino acid identity often fell below 20%, the relative order, position, and sequence of three structural motifs, the active site and the magnesium--and sugar-binding sites, were conserved in all 47 sequences. The phylogenetic history of these sequences was complex and marked by duplications and translocations; two instances of transkingdom horizontal gene transfer were identified. Nonetheless, the sequences fell within six well-defined evolutionary lineages, three of which contained only prokaryotes. Of the two prokaryotic/eukaryotic lineages, one contained bacterial, yeast, slimemold, invertebrate, and vertebrate homologs to human PGM1 and the second contained likely homologs to human PGM2. Indeed, an amino acid sequence, derived from a partial human cDNA, that fell within the second cross-kingdom lineage bears several characteristics expected for PGM2. A third lineage may contain homologs to human PGM3. On a general level, our phylogenetic-based approach shows promise for the further utilization of the extensive molecular database.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.