The motor skills of patients with spinal muscular atrophy, type I (SMA-I) are very limited. It is difficult to quantify the motor abilities of these patients and as a result there is currently no validated measure of motor function that can be utilized as an outcome measure in clinical trials of SMA-I. We have developed the Children’s Hospital of Philadelphia Infant Test of Neuromuscular Disorders (“CHOP INTEND”) to evaluate the motor skills of patients with SMA-I. The test was developed following the evaluation of 26 infants with SMA-I mean age 11.5 months (1.4–37.9 months) with the Test of Infant Motor Performance and The Children’s Hospital of Philadelphia Test of Strength in SMA, a newly devised motor assessment for SMA. Items for the CHOP INTEND were selected by an expert panel based on item mean and standard deviation, item frequency distribution, and Chronbach’s alpha. Intra-rater reliability of the resulting test was established by test–retest of 9 infants with SMA-I over a 2 month period; Intraclass correlation coefficient (ICC) (3,1) = 0.96. Interrater reliability was by video analysis of a mixed group of infants with neuromuscular disease by 4 evaluators; ICC (3,4) = 0.98 and in a group of 8 typically developing infants by 5 evaluators ICC (3,5) = 0.93. The face validity of the CHOP INTEND is supported by the use of an expert panel in item selection; however, further validation is needed. The CHOP INTEND is a reliable measure of motor skills in patients with SMA-I and neuromuscular disorders presenting in infancy.
Preliminary in vitro and in vivo studies with valproic acid (VPA) in cell lines and patients with spinal muscular atrophy (SMA) demonstrate increased expression of SMN, supporting the possibility of therapeutic benefit. We performed an open label trial of VPA in 42 subjects with SMA to assess safety and explore potential outcome measures to help guide design of future controlled clinical trials. Subjects included 2 SMA type I ages 2–3 years, 29 SMA type II ages 2–14 years and 11 type III ages 2–31 years, recruited from a natural history study. VPA was well-tolerated and without evident hepatotoxicity. Carnitine depletion was frequent and temporally associated with increased weakness in two subjects. Exploratory outcome measures included assessment of gross motor function via the modified Hammersmith Functional Motor Scale (MHFMS), electrophysiologic measures of innervation including maximum ulnar compound muscle action potential (CMAP) amplitudes and motor unit number estimation (MUNE), body composition and bone density via dual-energy X-ray absorptiometry (DEXA), and quantitative blood SMN mRNA levels. Clear decline in motor function occurred in several subjects in association with weight gain; mean fat mass increased without a corresponding increase in lean mass. We observed an increased mean score on the MHFMS scale in 27 subjects with SMA type II (p≤0.001); however, significant improvement was almost entirely restricted to participants <5 years of age. Full length SMN levels were unchanged and Δ7SMN levels were significantly reduced for 2 of 3 treatment visits. In contrast, bone mineral density (p≤0.0036) and maximum ulnar CMAP scores (p≤0.0001) increased significantly.ConclusionsWhile VPA appears safe and well-tolerated in this initial pilot trial, these data suggest that weight gain and carnitine depletion are likely to be significant confounding factors in clinical trials. This study highlights potential strengths and limitations of various candidate outcome measures and underscores the need for additional controlled clinical trials with VPA targeting more restricted cohorts of subjects.Trial RegistrationClinicalTrials.gov
BACKGROUND AND PURPOSE fMRI is increasingly used in neurosurgery to preoperatively identify areas of eloquent cortex. Our study evaluated the efficacy of clinical fMRI by analyzing the relationship between the distance from the tumor border to the area of functional activation (LAD) and patient pre- and postoperative morbidity and mortality. MATERIALS AND METHODS The study included patients with diagnosis of primary or metastatic brain tumor who underwent preoperative fMRI-based motor mapping (n = 74) and/or language mapping (n = 77). The impact of LAD and other variables collected from patient records was analyzed with respect to functional deficits in terms of morbidity (paresis and aphasia) and mortality. RESULTS Significant relationships were found between motor and language LAD and the existence of either pre- or postoperative motor (P < .001) and language deficits (P = .009). Increasing age was associated with motor and language deficits (P = .02 and P = .04 respectively). Right-handedness was related to language deficits (P = .05). Survival analysis revealed that pre- and postoperative deficits, grade, tumor location, and LAD predicted mortality. Motor deficits increased linearly as the distance from the tumor to the primary sensorimotor cortex decreased. Language deficits increased exponentially as the distance from the tumor to the language areas decreased below 1 cm. Postoperative mortality analysis showed an interaction effect between motor or language LAD and mortality predictors (grade and tumor location, respectively). CONCLUSIONS These findings indicate that tumors may affect language and motor function differently depending on tumor LAD. Overall, the data support the use of fMRI as a tool to evaluate patient prognosis and are directly applicable to neurosurgical planning.
Purpose This study examined the reliability and validity of the Test of Infant Motor Performance Screening Items (TIMPSI) in infants with type I spinal muscular atrophy (SMA). Methods After training, 12 evaluators scored 4 videos of infants with type I SMA to assess interrater reliability. Intrarater and test-retest reliability was further assessed for 9 evaluators during a SMA type I clinical trial, with 9 evaluators testing a total of 38 infants twice. Relatedness of the TIMPSI score to ability to reach and ventilatory support was also examined. Results Excellent interrater video score reliability was noted (intraclass correlation coefficient, 0.97–0.98). Intrarater reliability was excellent (intraclass correlation coefficient, 0.91–0.98) and test-retest reliability ranged from r = 0.82 to r = 0.95. The TIMPSI score was related to the ability to reach (P ≤ .05). Conclusion The TIMPSI can reliably be used to assess motor function in infants with type I SMA. In addition, the TIMPSI scores are related to the ability to reach, an important functional skill in children with type I SMA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.