Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) hold promise for therapeutic applications. To serve these functions, the hiPSC-CM must recapitulate the electrophysiologic properties of native adult cardiomyocytes. This study examines the electrophysiologic characteristics of hiPSC-CM between 11 and 121 days of maturity. Embryoid bodies (EBs) were generated from hiPS cell line reprogrammed with Oct4, Nanog, Lin28 and Sox2. Sharp microelectrodes were used to record action potentials (AP) from spontaneously beating clusters (BC) micro-dissected from the EBs (n = 103; 37°C) and to examine the response to 5 µM E-4031 (n = 21) or BaCl2 (n = 22). Patch-clamp techniques were used to record IKr and IK1 from cells enzymatically dissociated from BC (n = 49; 36°C). Spontaneous cycle length (CL) and AP characteristics varied widely among the 103 preparations. E-4031 (5 µM; n = 21) increased Bazett-corrected AP duration from 291.8±81.2 to 426.4±120.2 msec (p<0.001) and generated early afterdepolarizations in 8/21 preparations. In 13/21 BC, E-4031 rapidly depolarized the clusters leading to inexcitability. BaCl2, at concentrations that selectively block IK1 (50–100 µM), failed to depolarize the majority of clusters (13/22). Patch-clamp experiments revealed very low or negligible IK1 in 53% (20/38) of the cells studied, but presence of IKr in all (11/11). Consistent with the electrophysiological data, RT-PCR and immunohistochemistry studies showed relatively poor mRNA and protein expression of IK1 in the majority of cells, but robust expression of IKr. In contrast to recently reported studies, our data point to major deficiencies of hiPSC-CM, with remarkable diversity of electrophysiologic phenotypes as well as pharmacologic responsiveness among beating clusters and cells up to 121 days post-differentiation (dpd). The vast majority have a maximum diastolic potential that depends critically on IKr due to the absence of IK1. Thus, efforts should be directed at producing more specialized and mature hiPSC-CM for future therapeutic applications.
Background ATP-sensitive potassium (KATP) cardiac channels consist of inward rectifying channel subunits Kir6.1 or Kir6.2 (encoded by KCNJ8 or KCNJ11) and the sulfonylurea receptor subunits SUR2A (encoded by ABCC9). Objective To examine the association of mutations in KCNJ8 with Brugada (BrS) and early repolarization (ERS) syndromes and elucidate the mechanism underlying the gain of function of KATP channel current (IK-ATP). Methods Direct sequencing of KCNJ8 and other candidate genes was performed on 204 BrS and ERS probands and family members. Whole-cell and inside-out patch clamp methods were used to study mutated channels expressed in TSA201 cells. Results The same missense mutation, p.Ser422Leu (c.1265C>T) in KCNJ8, was identified in 3 BrS and 1 ERS proband, but was absent in 430 alleles from ethnically-matched healthy controls. Additional genetic variants included CACNB2b-D601E. Whole cell patch clamp studies showed a two-fold gain of function of glibenclamide-sensitive IK-ATP when KCNJ8-S422L was co-expressed with SUR2A-wild type. Inside-out patch clamp evaluation yielded a significantly greater IC50 for ATP in the mutant channels (785.5±2 vs. 38.4±3 µM, n=5; p<0.01) pointing to incomplete closing of the KATP channels under normoxic conditions. Patients with a CACNB2b-D601E polymorphism displayed longer QT/QTc intervals, likely due to their effect to induce an increase in ICa-L. Conclusion Our results support the hypothesis that KCNJ8 is a susceptibility gene for Brugada and early repolarization syndromes and point to S422L as a possible hotspot mutation. Our findings suggest that the S422L-induced gain of function in IK-ATP is due to reduced sensitivity to intracellular ATP.
BACKGROUND Cardiac sodium channel β-subunit mutations have been associated with several inherited cardiac arrhythmia syndromes. OBJECTIVE To identify and characterize variations in SCN1Bb associated with Brugada (BrS) and sudden infant death syndromes (SIDS). METHODS AND RESULTS Patient 1 was a 44-y/o male with an ajmaline-induced Type-1 ST-segment elevation in V1 and V2 supporting the diagnosis of BrS. Patient 2 was a 62-y/o female displaying a coved-type BrS ECG who developed cardiac arrest during fever. Patient 3 was a 4-m/o female SIDS case. All known exons and intron borders of BrS and SIDS susceptibility genes were amplified and sequenced in both directions. A R214Q variant was detected in exon 3A of SCN1Bb (Navβ1B) in all three probands, but not in any other gene previously associated with BrS or SIDS. R214Q was identified in 4 of 807 ethnically-matched healthy controls (0.50%). Wild type (WT) and mutant genes were expressed in TSA201 cells and studied using whole-cell patch-clamp and co-immunoprecipitation techniques. Co-expression of SCN5A/WT+SCN1Bb/R214Q resulted in peak sodium channel current (INa) 56.5% smaller compared to SCN5A/WT+SCN1Bb/WT ( n=11–12, p<0.05 ). Co-expression of KCND3/WT+SCN1Bb/R214Q induced a Kv4.3 current (Ito) 70.6% greater compared with KCND3/WT+SCN1Bb/WT(n=10–11, p<0.01). Co-immunoprecipitation indicated structural association between Navβ1B and Nav1.5 and Kv4.3. CONCLUSION Our results suggest that R214Q variation in SCN1Bb is a functional polymorphism that may serve as a modifier of the substrate responsible for Brugada or SIDS phenotypes via a combined loss of function of INa and gain of function of Ito.
Calmodulin (CaM) is the principal Ca2+ sensor in eukaryotic cells, orchestrating the activity of hundreds of proteins. Disease causing mutations at any of the three genes that encode identical CaM proteins lead to major cardiac dysfunction, revealing the importance in the regulation of excitability. In turn, some mutations at the CaM binding site of ion channels cause similar diseases. Here we provide a summary of the two sides of the partnership between CaM and ion channels, describing the diversity of consequences of mutations at the complementary CaM binding domains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.