Multivariate statistical methodsprincipal component analysis (PCA) and hierarchical cluster analysis (HCA)are applied to identify geochemically distinct groundwater groups in the territory of Latvia. The main processes observed to be responsible for groundwater chemical composition are carbonate and gypsum dissolution, fresh and saltwater mixing and ion exchange. On the basis of major ion concentrations, eight clusters (C1-C8) are identified. C6 is interpreted as recharge water not in equilibrium with most sediment forming minerals. Water table aquifers affected by diffuse agricultural influences are found in C3. Groundwater in C4 reflects brine or seawater admixture and gypsum dissolution in C5. C7 and C2 belong to typical bicarbonate groundwater resulting from calcite and dolomite weathering. Extremely low Cl À and SO 4 2À are observed in C8 and described as preindustrial groundwater or a solely carbonate weathering result. Finally, C1 seems to be a poorly defined subgroup resulting from mixing between other groups. This research demonstrates the validity of applying multivariate statistical methods (PCA and HCA) on major ion chemistry to distribute characteristic trace elements in each cluster even when incomplete records of trace elements are present. Key words | groundwater chemistry, hierarchical cluster analysis, principal component analysis, trace elements Riga region. A noticeable increase of salinity in fresh groundwater around the city of Riga has been observed (Levins ). Coastal groundwater aquifers sometimes are affected by seawater intrusion, in particular if large cities are using them 799
Small waterbodies have potentially high greenhouse gas emissions relative to their small footprint on the landscape, although there is high uncertainty in model estimates. Scaling their carbon dioxide (CO2) and methane (CH4) exchange with the atmosphere remains challenging due to an incomplete understanding and characterization of spatial and temporal variability in CO2 and CH4. Here, we measured partial pressures of CO2 (pCO2) and CH4 (pCH4) across 30 ponds and shallow lakes during summer in temperate regions of Europe and North America. We sampled each waterbody in three locations at three times during the growing season, and tested which physical, chemical, and biological characteristics related to the means and variability of pCO2 and pCH4 in space and time. Summer means of pCO2 and pCH4 were inversely related to waterbody size and positively related to floating vegetative cover; pCO2 was also positively related to dissolved phosphorus. Temporal variability in partial pressure in both gases weas greater than spatial variability. Although sampling on a single date was likely to misestimate mean seasonal pCO2 by up to 26%, mean seasonal pCH4 could be misestimated by up to 64.5%. Shallower systems displayed the most temporal variability in pCH4 and waterbodies with more vegetation cover had lower temporal variability. Inland waters remain one of the most uncertain components of the global carbon budget; understanding spatial and temporal variability will ultimately help us to constrain our estimates and inform research priorities.
Groundwater pollution by agrochemicals such as nitrogen fertilizers can cause complex biogeochemical transformations to take place in groundwater-dependent ecosystems. To explore the interaction between nitrogen load and groundwater-dependent, spring-fed ecosystems, a study was conducted in Latvia in an area of suspected high nitrate (NO3−) vulnerability due to its geological settings. A map of NO3− vulnerability along the margins of the carbonate aquifer in Latvia is presented. The map is based on a conceptual model that was developed during an extensive case study involving hydrological, hydrochemical, and habitat investigation of springs discharging from a karst aquifer and spring-fed ecosystems. Areas that should be prime targets for restricting fertilizer application are highlighted on the map. Although the case study revealed increased nitrogen pollution (up to 51 mg L−1, standard deviation of 9 mg L−1, in the springs discharging from the karst aquifer), no clear evidence of adverse effects due to NO3− pollution on the groundwater-dependent ecosystems using biotic indicators was found, highlighting the resilience of spring-fed ecosystems against high nitrogen inputs. In the case study, downstream groundwater-dependent ecosystems retained 70% of the reactive nitrogen during the vegetation season, but only a small proportion during the cold season. Thus, NO3− pollution can be partly mitigated by restoring wetlands along valley slopes where natural groundwater discharge takes place. The conceptual model developed for groundwater NO3− vulnerability is applicable to other areas in the Baltic region and other places with similar climatic and geological conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.