Public road infrastructure is developed all around the world. To save resources, ensure public safety, and provide longer-lasting road infrastructure, structural health monitoring (SHM) applications for roads have to be researched and developed. Asphalt is one of the largest used surface materials for the road building industry. This material also provides relatively easy fiber optical sensor technology installment, which can be effectively used for SHM applications—road infrastructure monitoring as well as for resource optimization when road building or their repairs are planned. This article focuses on the research of the fiber Bragg grating (FBG) optical temperature and strain sensor applications in road SHM, which is part of the greater interdisciplinary research project started at the Riga Technical University in the year 2017. Experimental work described in this article was realized in one of the largest Latvian road sites where the FBG strain and temperature sensors were installed into asphalt pavement, and experiments were carried out in two main scenarios. Firstly, in a controlled environment with a calibrated falling weight deflectometer (FWD) to test the installed FBG sensors. Secondly, by evaluating the real-time traffic impact on the measured strain and temperature, where different types of vehicles passed the asphalt span in which the sensors were embedded. The findings in this research illustrate that by gathering and combining data from calibrated FWD measurements, measurements from embedded FBG optical sensors which were providing the essential information of how the pavement structure could sustain the load and information about the traffic intensity on the specific road section, and the structural life of the pavement can be evaluated and predicted. Thus, it enables the optimal pavement future design for necessary requirements and constraints as well as efficient use, maintenance, and timely repairs of the public roads, directly contributing to the overall safety of our transportation system.
Market forecasts and trends for the usage of fiber optical sensors confirm that demand for them will continue to increase in the near future. This article focuses on the research of fiber Bragg grating (FBG) sensor network, their applications in IoT and structural health monitoring (SHM), and especially their coexistence with existing fiber optical communication system infrastructure. Firstly, the spectrum of available commercial optical FBG temperature sensor was experimentally measured and amplitude-frequency response data was acquired to further develop the simulation model in the environment of RSoft OptSim software. The simulation model included optical sensor network, which is combined with 8-channel intensity-modulated wavelength division multiplexed (WDM) fiber optical data transmission system, where one shared 20 km long ITU-TG.652 single-mode optical fiber was used for transmission of both sensor and data signals. Secondly, research on a minimal allowable channel spacing between sensors’ channels was investigated by using MathWorks MATLAB software, and a new effective and more precise determination algorithm of the exact center of the sensor signal’s peak was proposed. Finally, we experimentally show successfully operating coexistence concept of the spectrum-sliced fiber optical transmission system with embedded scalable FBG sensor network over one shared optical fiber, where the whole system is feed by only one broadband light source.
We review the frequency comb generation process, main microresonator parameters such as free spectral range (FSR) and Q-factor, previously used optical frequency comb (OFC) generator parameters and resulting frequency combs, as well as the implementation of OFC for optical data transmission. An optical frequency comb is produced in a setup based on a tapered fibre and a SiO2 microsphere. The generated frequency comb has a frequency spacing of 2 nm or 257 GHz. During the fabrication of a tapered fibre from SMF28, use is made of the transmission signal to control the taper pulling process. The final measured tapered fibre transmission is ∼96%. A microsphere whispering gallery-mode resonator (WGMR), exhibiting a Q-factor of at least 2 × 107, is fabricated from an optical fibre with a thicker core than SSMF. Moreover, for future experiments, a frequency comb generator based on a free-space setup consisting of lenses, a prism, and a microsphere is developed, and the Q-factor dependence on different distances between the prism and the microsphere is investigated.
Fiber Bragg grating (FBG) optical sensors are state-of-the-art technology that can be integrated into the road structure, providing real-time traffic-induced strain readings and ensuring the monitoring of the road’s structural health. By implementing specific FBG sensors, it is possible to detect each vehicle’s axle count and the induced strain changes in the road structure. In this study, FBG sensors are embedded at the top of the 240-mm-thick cement-treated reclaimed asphalt pavement mixture layer of the road (specifically, 25 mm deep within the road). Optical sensors’ signal interrogation units are used to measure the strain and temperature and collect data of the road’s passing vehicles, starting from passenger cars that have two axles and up to heavy trucks that have six axles. Passenger cars with 2 axles generate a typical (90% events) strain of 0.8–4.1 μm/m, the 2-axle minibus 5.5–8.5 μm/m, 2–3-axle trucks 11–26 μm/m, but 4–6-axle trucks 14–36 μm/m per each axle. A large number of influencing parameters determine the pavement design leading to the great uncertainty in the prediction of the strain at the boundary between the asphalt surface and cement-treated base layers. Real-time strain and temperature measurements help to understand the actual behavior of the pavement structure under an applied load, thus assisting in validating the proposed pavement design.
DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.