Abstract. A class of (right) Rickart rings, called strong, is isolated. In particular, every Rickart *-ring is strong. It is shown in the paper that every strong Rickart ring R admits a binary operation which turns R into a right normal band having an upper bound property with respect to its natural order ≤; such bands are known as right normal skew nearlattices. The poset pR, ≤q is relatively orthocomplemented; in particular, every initial segment in it is orthomodular.The order ≤ is actually a version of the so called right-star order. The one-sided star orders are well-investigated for matrices and recently have been generalized to bounded linear Hilbert space operators and to abstract Rickart *-rings. The paper demonstrates that they can successfully be treated also in Rickart rings without involution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.