The role of various quaternary ammonium-modified montmorillonites in epoxy/diamine nanocomposite formation is examined to further refine the criteria for selection of organic modifiers necessary to enable fabrication of thermoset resins containing nanoscale dispersions of inorganic phases. Utilization of a hydroxyl-substituted quaternary ammonium modifier affords flexibility to combine both catalytic functionality, which increases the intragallery reaction rate, with enhanced miscibility toward both reagents. The rheological implications of these processing techniques are discussed with regards to using thermoset nanocomposites as a matrix in conventional fiber reinforced composites. The use of a low-boiling solvent to enhance mixability and processability of the initial mixtures is shown not to alter the structure or properties of the final nanocomposite. Also, the use of autoclave techniques enabled fabrication of high-quality specimens containing up to 20 wt % organically modified layered silicate (OLS). Finally, exfoliated and partially exfoliated epoxy/diamine nanocomposites were produced with enhanced heat-distortion temperature and increased flammability resistance.
Small-angle light scattering and ultra small-angle X-ray scattering are used to assess the morphology of single-walled (SWNTs) and multi-walled carbon nanotubes (MWNTs). For MWNTs, a powerlaw scattered-intensity profile with a slope of -1.08 is consistent with the rod-like morphology. For SWNTs, however, scattering profiles characteristic of rod-like morphology are not observed on any length-scale from 1 nm to 50 µm. Rather, disordered objects are found that we identify as a network of carbon "ropes" enmeshed with polyelectrolyte dispersants. The effectiveness of polyelectrolyte dispersants is assessed using small-angle light scattering in conjunction with exposure to ultrasound. In the presence of an anionic polyelectrolyte, sonication can assist dispersion of both SWNTs and MWNTs. In the presence of a cationic agent, however, sonication can induce aggregation. SWNTs respond differently to ultrasound depending on whether residual synthesis catalyst is present. Four dispersants are studied, of which sodium polystyrene sulfonate is the most effective and polyallylamine hydrochloride is the least effective.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.