This study compares a three-phase three-level voltage source inverter with an intermediate dc-dc boost converter and a quasi-Z-source inverter in terms of passive elements values and dimensions, semiconductor stresses, and overall efficiency. A comparative analysis was conducted with relative parameters to evaluate converter parameters for any application. The equations obtained were confirmed by simulation and experimental setup. Field of application has been discussed.
Shoot-through control methods for qZSI-based dc/dc converters are presented and studied. The major goal was to increase efficiency. A new modulation technique, pulse width modulation (PWM) with shifted shoot-through, is compared with the conventional PWM shoot-through control method. The new method reduces switching frequency of bottom side transistors and inherently features partial soft switching. Previous studies have shown that the biggest drawback of PWM control with shoot-through is unequal switching frequencies of transistors. One solution to that problem could be signal swapping that has been proposed by the authors of this paper. All control methods are first simulated and then experimentally verified on a test prototype.
This paper proposes a novel step-up DC/DC converter with galvanic isolation -the quasi-Z-source inverter (qZSI) based DC/DC converter and discusses three different shootthrough PWM control methods suitable for this topology. The proposed converter is meant for applications where the wide range of voltage gain is demanded, e.g. with renewable energy sources (fuel cells, photovoltaic cells), in telecom, aerospace and some other applications. For the verification of theoretical assumptions the converter prototype was assembled and tested. Experimental waveforms of the converter operated with different shoot-through PWM control methods are compared and discussed. Design considerations for converter and different control signal generators are provided.
Keywords-DC/DC converter, quasi-Z-source inverter (qZSI), control method, pulse-width modulation (PWM), isolation transformer, gating signal generatorI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.