Summary We analyzed primary breast cancers by genomic DNA copy number arrays, DNA methylation, exome sequencing, mRNA arrays, microRNA sequencing and reverse phase protein arrays. Our ability to integrate information across platforms provided key insights into previously-defined gene expression subtypes and demonstrated the existence of four main breast cancer classes when combining data from five platforms, each of which shows significant molecular heterogeneity. Somatic mutations in only three genes (TP53, PIK3CA and GATA3) occurred at > 10% incidence across all breast cancers; however, there were numerous subtype-associated and novel gene mutations including the enrichment of specific mutations in GATA3, PIK3CA and MAP3K1 with the Luminal A subtype. We identified two novel protein expression-defined subgroups, possibly contributed by stromal/microenvironmental elements, and integrated analyses identified specific signaling pathways dominant in each molecular subtype including a HER2/p-HER2/HER1/p-HER1 signature within the HER2-Enriched expression subtype. Comparison of Basal-like breast tumors with high-grade Serous Ovarian tumors showed many molecular commonalities, suggesting a related etiology and similar therapeutic opportunities. The biologic finding of the four main breast cancer subtypes caused by different subsets of genetic and epigenetic abnormalities raises the hypothesis that much of the clinically observable plasticity and heterogeneity occurs within, and not across, these major biologic subtypes of breast cancer.
PurposeThe 2015 American College of Medical Genetics and Genomics–Association for Molecular Pathology (ACMG–AMP) guidelines were a major step toward establishing a common framework for variant classification. In practice, however, several aspects of the guidelines lack specificity, are subject to varied interpretations, or fail to capture relevant aspects of clinical molecular genetics. A simple implementation of the guidelines in their current form is insufficient for consistent and comprehensive variant classification.MethodsWe undertook an iterative process of refining the ACMG–AMP guidelines. We used the guidelines to classify more than 40,000 clinically observed variants, assessed the outcome, and refined the classification criteria to capture exceptions and edge cases. During this process, the criteria evolved through eight major and minor revisions.ResultsOur implementation: (i) separated ambiguous ACMG–AMP criteria into a set of discrete but related rules with refined weights; (ii) grouped certain criteria to protect against the overcounting of conceptually related evidence; and (iii) replaced the “clinical criteria” style of the guidelines with additive, semiquantitative criteria.ConclusionSherloc builds on the strong framework of 33 rules established by the ACMG–AMP guidelines and introduces 108 detailed refinements, which support a more consistent and transparent approach to variant classification.
Single nucleotide polymorphisms (SNPs) are the most common form of genetic variation in humans. The number of SNPs identified in the human genome is growing rapidly, but attaining experimental knowledge about the possible disease association of variants is laborious and time-consuming. Several computational methods have been developed for the classification of SNPs according to their predicted pathogenicity. In this study, we have evaluated the performance of nine widely used pathogenicity prediction methods available on the Internet. The evaluated methods were MutPred, nsSNPAnalyzer, Panther, PhD-SNP, PolyPhen, PolyPhen2, SIFT, SNAP, and SNPs&GO. The methods were tested with a set of over 40,000 pathogenic and neutral variants. We also assessed whether the type of original or substituting amino acid residue, the structural class of the protein, or the structural environment of the amino acid substitution, had an effect on the prediction performance. The performances of the programs ranged from poor (MCC 0.19) to reasonably good (MCC 0.65), and the results from the programs correlated poorly. The overall best performing methods in this study were SNPs&GO and MutPred, with accuracies reaching 0.82 and 0.81, respectively.
Many gene defects are relatively easy to identify experimentally, but obtaining information about the effects of sequence variations and elucidation of the detailed molecular mechanisms of genetic diseases will be among the next major efforts in mutation research. Amino acid substitutions may have diverse effects on protein structure and function; thus, a detailed analysis of the mutations is essential. Experimental study of the molecular effects of mutations is laborious, whereas useful and reliable information about the effects of amino acid substitutions can readily be obtained by theoretical methods. Experimentally defined structures and molecular modeling can be used as a basis for interpretation of the mutations. The effects of missense mutations can be analyzed even when the 3D structure of the protein has not been determined, although structure-based analyses are more reliable. Structural analyses include studies of the contacts between residues, their implication for the stability of the protein, and the effects of the introduced residues. Investigations of steric and stereochemical consequences of substitutions provide insights on the molecular fit of the introduced residue. Mutations that change the electrostatic surface potential of a protein have wide-ranging effects. Analyses of the effects of mutations on interactions with ligands and partners have been performed for elucidation of functional mutations. We have employed numerous methods for predicting the effects of amino acid substitutions. We discuss the applicability of these methods in the analysis of genes, proteins, and diseases to reveal protein structure-function relationships, which is essential to gain insights into disease genotype-phenotype correlations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.