In this study, chitosan-alginate polyelectrolyte microparticles containing the antibiotic, vancomycin chloride were prepared using the ionotropic gelation (coacervation) technique. In vitro release and drug transport mechanisms were studied concerning the chitosan only and alginate only microparticles as a control group. Further, the effect of porosity on the drug transport mechanism was also studied for chitosan-alginate mixed particles produced by lyophilizing in contrast to the air-dried non-porous particles. According to the in vitro release data, alginate only and chitosan only microparticles showed burst release and prolonged release respectively. Chitosan-alginate lyophilized microparticles showed the best-controlled release of vancomycin with the average release of 22μg per day for 14days. Also, when increasing alginate concentration there was no increase in the release rate of vancomycin. The release data of all the microparticles were treated with Ritger-Peppas, Higuchi, Peppas-Sahlin, zero-order, and first-order kinetic models. The best fit was observed with Peppas-Sahlin model, indicating the drug transport mechanism was controlled by both Fickian diffusion and case II relaxations. Also, Fickian diffusion dominates the drug transport mechanism of all air-dried samples during the study period. However, the Fickian contribution was gradually reducing with time. Porosity significantly effects the drug transport mechanism as case II relaxation dominates after day 10 of the lyophilized microparticles.
Curcumin-loaded ZnO nanocomposites act as an effective, synergistically-enhanced combination delivery/therapeutic agent, holding promise for anticancer and antimicrobial therapy with reduced toxicities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.