In this study, ten Fusarium toxins were analysed in wheat and maize commodities from Albania. In total, 71 samples of wheat and 45 samples of maize were collected from different producing regions. The analytical procedure consisted of a simple one-step sample extraction followed by the determination of toxins using liquid chromatography coupled with tandem mass spectrometry. Fusarium toxins were found in 23% of the analysed wheat samples and in 78% of maize samples. In maize samples, most often fumonisins B1 (FB1) and B2 (FB2) were found. They were present in 76% of samples. They were detected in all positive samples except in one with concentrations ranging from 59.9 to 16,970 μg/kg. The sum of FB1 and FB2 exceeded the EU maximum permitted level (4000 μg/kg) in 31% of maize samples. In wheat samples, the only detected Fusarium mycotoxin was deoxynivalenol (DON), present in 23% of samples. In one sample with the concentration of 1916 μg/kg, the EU maximum permitted level (1250 μg/kg) was exceeded. This is the first report on the presence of Fusarium toxins in wheat and maize grains cultivated in Albania.
White-rot fungi are extensively used in various submerged biotechnology processes to produce ligninolytic enzymes. Transfer of the process from the laboratory to the industrial level requires optimization of the cultivation conditions on the laboratory scale. An interesting area of optimization is pellet growth since this morphological form solves problems such as the decreased oxygen concentration, limited heat, and nutrient transport, which usually occur in dispersed mycelium cultures. Many submerged fermentations with basidiomycetes in pellet form were done with Phanerochaete, Trametes, and Bjerkandera species, among others. In our study, another promising basidiomycete, D. squalens, was used for ligninolytic enzyme production. With the addition of wood particles (sawdust) as a natural inducer and optimization of mixing and aeration conditions in laboratory stirred tank (STR) and bubble column (BCR) reactors on pellet growth and morphology, the secretion of laccase and the manganese-dependent peroxidase into the medium was substantially enhanced. The maximum mean pellet radius was achieved after 10 days in the BCR (5.1 mm) where pellets were fluffy and 5 days in the STR (3.5 mm) where they were round and smooth. The maximum Lac activity (1,882 U l(-1)) was obtained after 12 days in the STR, while maximum MnP activity (449.8 U l(-1)) occurred after 18 days in the BCR. The pellet size and morphology depended on the agitation and aeration conditions and consequently influenced a particular enzyme synthesis. The enzyme activities were high and comparable with the activities found for other investigations in reactors with basidiomycetes in the form of pellets.
This four-year study reports the occurrence of ergot alkaloids (EAs) in cereals intended for animal feeding collected in Slovenia. A total of 517 samples of cereals were analysed using liquid chromatography-tandem mass spectrometry for the presence of EAs. The sample set included wheat, rye, triticale, oat, spelt and barley. The study revealed that 17% of the analysed cereal samples were contaminated with at least one ergot alkaloid. EAs have two epimeric forms: -ine and -inine. The incidence rates of the -ine and -inine forms in the analysed samples were 16% and 15%, respectively. The highest contamination rates were observed in rye (54%), oat (50%) and spelt (30%), where the highest mean concentrations of total EAs were also determined (502 µg/kg, 594 µg/kg and 715 µg/kg, respectively). However, the highest concentrations of total EAs were found in wheat and rye (4217 µg/kg and 4114 µg/kg, respectively). The predominant EAs were ergometrine, ergosine and ergocristinine. The occurrence of six or more ergot alkaloids was observed in 49% of the positive samples. A weak correlation (p = 0.284) in the positive samples was found between the mass of sclerotia and the total concentrations of EAs using the Spearman correlation coefficient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.