Abstract-Classification of imbalanced dataset is the most popular and challenged problems for researchers to solve in nowadays. This paper proposed a two-steps approach to improve the quality of class prediction imbalanced breast cancer dataset. The two-steps approach consists of two main techniques: 1) using feature selection techniques to filter out unimportant features from the dataset; and 2) using the over-sampling technique to adjust the size of the minority class to be similar to the size of the majority class. The three different classification algorithms: artificial neural network (MLP), decision tree (C4.5) and Naï ve Bayes, were applied. The classification result indicated that C4.5 was the most suitable to classify this dataset which can give the highest accuracy of 83.80%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.