Progressive kidney diseases and renal fibrosis are associated with endothelial injury and capillary rarefaction. However, our understanding of these processes has been hampered by the lack of tools enabling the quantitative and noninvasive monitoring of vessel functionality. Here, we used micro-computed tomography (mCT) for anatomical and functional imaging of vascular alterations in three murine models with distinct mechanisms of progressive kidney injury: ischemia-reperfusion (I/R, days 1-56), unilateral ureteral obstruction (UUO, days 1-10), and Alport mice (6-8 weeks old). Contrast-enhanced in vivo mCT enabled robust, noninvasive, and longitudinal monitoring of vessel functionality and revealed a progressive decline of the renal relative blood volume in all models. This reduction ranged from 220% in early disease stages to 261% in late disease stages and preceded fibrosis. Upon Microfil perfusion, high-resolution ex vivo mCT allowed quantitative analyses of three-dimensional vascular networks in all three models. These analyses revealed significant and previously unrecognized alterations of preglomerular arteries: a reduction in vessel diameter, a prominent reduction in vessel branching, and increased vessel tortuosity. In summary, using mCT methodology, we revealed insights into macro-to-microvascular alterations in progressive renal disease and provide a platform that may serve as the basis to evaluate vascular therapeutics in renal disease.
Kidney disease represents a serious global health problem. One of the main concerns is its late diagnosis, only feasible in a progressed disease state. The lack of a clinical manifestation in the early stages and the fact that the commonly measured parameters of renal function are markedly reduced only during advanced stages of the disease are the main cause. Changes at the molecular level of the kidney tissue occur even before nitrogenous substances, such as creatinine and urea, start to accumulate in the blood. Renal proximal tubules contain a large number of mitochondria and are critical for the energy-demanding process of reabsorption of water and solutes. Mitochondria are the largest producers of oxygen radicals, which, in turn, increase the susceptibility of kidneys to oxidative stress-induced damage. Free radicals and prooxidants produced during acute or chronic kidney injury may further aggravate the course of the disease and play a role in the pathogenesis of subsequent complications. Prevention might be the solution in CKD, but patients are often reluctant to undergo preventive examinations. Noninvasive markers and the possibility to obtain samples at home might help to increase compliance. This review will provide an overview of the possible uses of markers of oxidative status in noninvasive biofluids in patients with renal disease.
Progressive renal diseases are associated with rarefaction of peritubular capillaries, but the ultrastructural and functional alterations of the microvasculature are not well described. To study this, we analyzed different time points during progressive kidney damage and fibrosis in 3 murine models of different disease etiologies. These models were unilateral ureteral obstruction, unilateral ischemia-reperfusion injury, and Col4a3-deficient mice, we analyzed ultrastructural alterations in patient biopsy specimens. Compared with kidneys of healthy mice, we found a significant and progressive reduction of peritubular capillaries in all models analyzed. Ultrastructurally, compared with the kidneys of control mice, focal widening of the subendothelial space and higher numbers of endothelial vacuoles and caveolae were found in fibrotic kidneys. Quantitative analysis showed that peritubular capillary endothelial cells in fibrotic kidneys had significantly and progressively reduced numbers of fenestrations and increased thickness of the cell soma and lamina densa of the capillary basement membrane. Similar ultrastructural changes were also observed in patient's kidney biopsy specimens. Compared with healthy murine kidneys, fibrotic kidneys had significantly increased extravasation of Evans blue dye in all 3 models. The extravasation could be visualized using 2-photon microscopy in real time in living animals and was mainly localized to capillary branching points. Finally, fibrotic kidneys in all models exhibited a significantly greater degree of interstitial deposition of fibrinogen. Thus, peritubular capillaries undergo significant ultrastructural and functional alterations during experimental progressive renal diseases, independent of the underlying injury. Analyses of these alterations could provide read-outs for the evaluation of therapeutic approaches targeting the renal microvasculature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.