Great advancements have been made with the development of novel systems incorporating nuclear entities in drug delivery systems, with the possibility of reshaping the nuclear medicine landscape. Nonetheless, translation from preclinical evaluations to clinical use is lacking and serious investment needs to be made towards this goal.
Despite numerous clinical trials and pre-clinical developments, the treatment of glioblastoma (GB) remains a challenge. The current survival rate of GB averages one year, even with an optimal standard of care. However, the future promises efficient patient-tailored treatments, including targeted radionuclide therapy (TRT). Advances in radiopharmaceutical development have unlocked the possibility to assess disease at the molecular level allowing individual diagnosis. This leads to the possibility of choosing a tailored, targeted approach for therapeutic modalities. Therapeutic modalities based on radiopharmaceuticals are an exciting development with great potential to promote a personalised approach to medicine. However, an effective targeted radionuclide therapy (TRT) for the treatment of GB entails caveats and requisites. This review provides an overview of existing nuclear imaging and TRT strategies for GB. A critical discussion of the optimal characteristics for new GB targeting therapeutic radiopharmaceuticals and clinical indications are provided. Considerations for target selection are discussed, i.e. specific presence of the target, expression level and pharmacological access to the target, with particular attention to blood-brain barrier crossing. An overview of the most promising radionuclides is given along with a validation of the relevant radiopharmaceuticals and theranostic agents (based on small molecules, peptides and monoclonal antibodies). Moreover, toxicity issues and safety pharmacology aspects will be presented, both in general and for the brain in particular.
The labeling of peptides with gallium-68 is often initially performed by manual labeling, but with high clinical demand, other alternatives are needed. Coldkits or automated synthesis are viable options for standardized methods and deemed pharmaceutically more acceptable. This study compares these [ 68 Ga] Ga-PSMA-11 production methods. Data from 40 kit-based and 40 automated syntheses of [ 68 Ga]Ga-PSMA-11 were analyzed. Pre-set criteria were evaluated including radiochemical purity, radionuclidic purity, chemical purity, physiological acceptability and sterility. The operator time and radiation dose received were measured. The robustness and repeatability of each method were assessed and a comparison of the running costs of each method is also provided. For both the methods all the analyzed products met the release criteria. No differences were found in radiochemical purity, radiochemical identity, radionuclidic purity, and sterility. However, radiochemical yield and apparent molar activity showed significant differences. For both methods, whole body radiation exposure to operators was lower than with manual labeling (25-40 μSv). The exposure during kit-based labeling (14.5 ± μSv) was seven times higher than that of automated synthesis (2.05 ± 0.99 μSv). The automated synthesis was the more expensive method. Both methods are sound alternatives to manual synthesis and offer higher quality, better radiation protection and a more reliable manufacturing of radiopharmaceuticals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.