Keratoconus (KC) is non-inflammatory, bilateral progressive corneal ectasia, and a disease of established biomechanical instability. The etiology of KC is believed to be multifactorial. Although previous studies gained insight into the understanding of the disease, little is known thus far on global protein phosphorylation changes in keratoconus. We performed phosphoproteome analysis of corneal epithelium from control (N = 5) and KC patients. Tandem mass tag (TMT) multiplexing technology along with immobilized metal affinity chromatography (IMAC) were used for the phosphopeptides enrichment and quantitation. Enriched peptides were analyzed on Orbitrap Fusion Tribrid mass spectrometer. This leads to the identification of 2939 unique phosphopeptides derived from 1270 proteins. We observed significant differential phosphorylation of 591 phosphopeptides corresponding to 375 proteins. Our results provide first phosphoproteomic signature of the keratoconus disease and identified dysregulated signaling pathways that can be targeted for therapy in future studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.