The recent outbreak of a novel coronavirus, named COVID‐19 by the World Health Organization (WHO) has pushed the global economy and humanity into a disaster. In their attempt to control this pandemic, the governments of all the countries have imposed a nationwide lockdown. Although the lockdown may have assisted in limiting the spread of the disease, it has brutally affected the country, unsettling complete value‐chains of most important industries. The impact of the COVID‐19 is devastating on the economy. Therefore, this study has reported about the impact of COVID‐19 epidemic on various industrial sectors. In this regard, the authors have chosen six different industrial sectors such as automobile, energy and power, agriculture, education, travel and tourism and consumer electronics, and so on. This study will be helpful for the policymakers and government authorities to take necessary measures, strategies and economic policies to overcome the challenges encountered in different sectors due to the present pandemic.
An anomaly exposure system's foremost objective is to categorize the behavior of the system into normal and untruthful actions. To estimate the possible incidents, the administrators of smart cities have to apply anomaly detection engines to avert data from being jeopardized by errors or attacks. This article aims to propose a novel deep learning‐based framework with a dense random neural network approach for distinguishing and classifying anomaly from normal behaviors based on the type of attack in the Internet of Things. Machine learning algorithms have the improbability to explore the performance, compared with deep learning models. Distinctively, the examination of deep learning neural network architectures achieved enhanced computation performance and deliver desired results for categorical attacks. This article focuses on the complete study of experimentation performance and evaluations on deep learning neural network architecture for the recognition of seven categorical attacks found in the Distributed Smart Space Orchestration System traffic traces data set. The empirical results of the simulation model report that deep neural network architecture performs well through noticeable improvement in most of the categorical attack.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.