[(18)F]T807 demonstrates high affinity and selectivity to PHF-tau as well as favorable in vivo properties, making this a promising candidate as an imaging agent for AD.
Senile plaques and neurofibrillary tangles are prominent neuropathological hallmarks in Alzheimer's disease and are considered to be targets for therapeutic intervention as well as biomarkers for diagnostic in vivo imaging agents. While there are a number of amyloid-β positron emission tomography (PET) tracers currently in different stages of clinical development and commercialization, there have been very few reports on imaging agents selectively targeting tau aggregates. In search of [18F]-PET tracers that possess great binding affinity and selectivity toward tau tangles, we tested more than 900 compounds utilizing a unique screening process. A competitive autoradiography assay was set up to test compounds for binding to native tau tangles and amyloid-β plaques on human brain tissue sections. In our in vitro assays, the 18F labeled compound [18F]-T808 displayed a high level of binding affinity and good selectivity for tau aggregates over amyloid-β plaques. [18F]-T808 showed rapid uptake and washout in rodent brains. Our in vitro and preclinical in vivo studies suggest that [18F]-T808 possesses suitable properties and characteristics to be a specific and selective PET probe for imaging of paired helical filament tau in human brains.
Changes in expression and dysfunctional signaling of TrkA/B/C receptors and oncogenic Trk fusion proteins are found in neurological diseases and cancers. Here, we describe the development of a first F-labeled optimized lead suitable for in vivo imaging of Trk, [F]TRACK, which is radiosynthesized with ease from a nonactivated aryl precursor concurrently combining largely reduced P-gp liability and improved brain kinetics compared to previous leads while displaying high on-target affinity and human kinome selectivity.
Using structure-guided design, several cell based assays, and microdosed positron emission tomography (PET) imaging, we identified a series of highly potent, selective, and brain-penetrant oxazole-4-carboxamide-based inhibitors of glycogen synthase kinase-3 (GSK-3). An isotopologue of our first-generation lead, [3H]PF-367, demonstrates selective and specific target engagement in vitro, irrespective of the activation state. We discovered substantial ubiquitous GSK-3-specific radioligand binding in Tg2576 Alzheimer’s disease (AD), suggesting application for these compounds in AD diagnosis and identified [11C]OCM-44 as our lead GSK-3 radiotracer, with optimized brain uptake by PET imaging in nonhuman primates. GSK-3β-isozyme selectivity was assessed to reveal OCM-51, the most potent (IC50 = 0.030 nM) and selective (>10-fold GSK-3β/GSK-3α) GSK-3β inhibitor known to date. Inhibition of CRMP2T514 and tau phosphorylation, as well as favorable therapeutic window against WNT/β-catenin signaling activation, was observed in cells.
Positron emission tomography (PET) imaging of Colony Stimulating Factor 1 Receptor (CSF1R) is a new strategy for quantifying both neuroinflammation and inflammation in the periphery since CSF1R is expressed on microglia and macrophages. AZ683 has high affinity for CSF1R (Ki = 8 nM; IC50 = 6 nM) and >250-fold selectivity over 95 other kinases. In this paper, we report the radiosynthesis of [11C]AZ683 and initial evaluation of its use in CSF1R PET. [11C]AZ683 was synthesized by 11C-methylation of the desmethyl precursor with [11C]MeOTf in 3.0% non-corrected activity yield (based upon [11C]MeOTf), >99% radiochemical purity and high molar activity. Preliminary PET imaging with [11C]AZ683 revealed low brain uptake in rodents and nonhuman primates, suggesting that imaging neuroinflammation could be challenging but that the radiopharmaceutical could still be useful for peripheral imaging of inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.