Hemispheric asymmetry is a cardinal feature of human brain organization. Altered brain asymmetry has also been linked to some cognitive and neuropsychiatric disorders. Here the ENIGMA consortium presents the largest ever analysis of cerebral cortical asymmetry and its variability across individuals. Cortical thickness and surface area were assessed in MRI scans of 17,141 healthy individuals from 99 datasets worldwide. Results revealed widespread asymmetries at both hemispheric and regional levels, with a generally thicker cortex but smaller surface area in the left hemisphere relative to the right. Regionally, asymmetries of cortical thickness and/or surface area were found in the inferior frontal gyrus, transverse temporal gyrus, parahippocampal gyrus, and entorhinal cortex. These regions are involved in lateralized functions, including language and visuospatial processing. In addition to population-level asymmetries, variability in brain asymmetry was related to sex, age, and brain size (indexed by intracranial volume). Interestingly, we did not find significant associations between asymmetries and handedness. Finally, with two independent pedigree datasets (N = 1,443 and 1,113, respectively), we found several asymmetries showing modest but highly reliable heritability. The structural asymmetries identified, and their variabilities and heritability provide a reference resource for future studies on the genetic basis of brain asymmetry and altered laterality in cognitive, neurological, and psychiatric disorders.Significance StatementLeft-right asymmetry is a key feature of the human brain's structure and function. It remains unclear which cortical regions are asymmetrical on average in the population, and how biological factors such as age, sex and genetic variation affect these asymmetries. Here we describe by far the largest ever study of cerebral cortical brain asymmetry, based on data from 17,141 participants. We found a global anterior-posterior 'torque' pattern in cortical thickness, together with various regional asymmetries at the population level, which have not been previously described, as well as effects of age, sex, and heritability estimates. From these data, we have created an on-line resource that will serve future studies of human brain anatomy in health and disease.
Objective: Although lower brain volume has been routinely observed in individuals with substance dependence compared with nondependent control subjects, the brain regions exhibiting lower volume have not been consistent across studies. In addition, it is not clear whether a common set of regions are involved in substance dependence regardless of the substance used or whether some brain volume effects are substance specific. Resolution of these issues may contribute to the identification of clinically relevant imaging biomarkers. Using pooled data from 14 countries, the authors sought to identify general and substance-specific associations between dependence and regional brain volumes. Method: Brain structure was examined in a mega-analysis of previously published data pooled from 23 laboratories, including 3,240 individuals, 2,140 of whom had substance dependence on one of five substances: alcohol, nicotine, cocaine, methamphetamine, or cannabis. Subcortical volume and cortical thickness in regions defined by FreeSurfer were compared with nondependent control subjects when all sampled substance categories were combined, as well as separately, while controlling for age, sex, imaging site, and total intracranial volume. Because of extensive associations with alcohol dependence, a secondary contrast was also performed for dependence on all substances except alcohol. An optimized split-half strategy was used to assess the reliability of the findings. Results: Lower volume or thickness was observed in many brain regions in individuals with substance dependence. The greatest effects were associated with alcohol use disorder. A set of affected regions related to dependence in general, regardless of the substance, included the insula and the medial orbitofrontal cortex. Furthermore, a support vector machine multivariate classification of regional brain volumes successfully classified individuals with substance dependence on alcohol or nicotine relative to nondependent control subjects. Conclusions: The results indicate that dependence on a range of different substances shares a common neural substrate and that differential patterns of regional volume could serve as useful biomarkers of dependence on alcohol and nicotine.
AimsRepeated drug exposure can lead to an approach-bias, i.e. the relatively automatically triggered tendencies to approach rather that avoid drug-related stimuli. Our main aim was to study this approach-bias in heavy cannabis users with the newly developed cannabis Approach Avoidance Task (cannabis-AAT) and to investigate the predictive relationship between an approach-bias for cannabis-related materials and levels of cannabis use, craving, and the course of cannabis use.Design, settings and participantsCross-sectional assessment and six-month follow-up in 32 heavy cannabis users and 39 non-using controls.MeasurementsApproach and avoidance action-tendencies towards cannabis and neutral images were assessed with the cannabis AAT. During the AAT, participants pulled or pushed a joystick in response to image orientation. To generate additional sense of approach or avoidance, pulling the joystick increased picture size while pushing decreased it. Craving was measured pre- and post-test with the multi-factorial Marijuana Craving Questionnaire (MCQ). Cannabis use frequencies and levels of dependence were measured at baseline and after a six-month follow-up.FindingsHeavy cannabis users demonstrated an approach-bias for cannabis images, as compared to controls. The approach-bias predicted changes in cannabis use at six-month follow-up. The pre-test MCQ emotionality and expectancy factor were associated negatively with the approach-bias. No effects were found on levels of cannabis dependence.ConclusionsHeavy cannabis users with a strong approach-bias for cannabis are more likely to increase their cannabis use. This approach-bias could be used as a predictor of the course of cannabis use to identify individuals at risk from increasing cannabis use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.