Phenome-wide association studies (PheWAS) have been proposed as a possible aid in drug development through elucidating mechanisms of action, identifying alternative indications, or predicting adverse drug events (ADEs). Here, we select 25 single nucleotide polymorphisms (SNPs) linked through genome-wide association studies (GWAS) to 19 candidate drug targets for common disease indications. We interrogate these SNPs by PheWAS in four large cohorts with extensive health information (23andMe, UK Biobank, FINRISK, CHOP) for association with 1683 binary endpoints in up to 697,815 individuals and conduct meta-analyses for 145 mapped disease endpoints. Our analyses replicate 75% of known GWAS associations (P < 0.05) and identify nine study-wide significant novel associations (of 71 with FDR < 0.1). We describe associations that may predict ADEs, e.g., acne, high cholesterol, gout, and gallstones with rs738409 (p.I148M) in PNPLA3 and asthma with rs1990760 (p.T946A) in IFIH1. Our results demonstrate PheWAS as a powerful addition to the toolkit for drug discovery.
Adrenocortical dysplasia (acd) is a spontaneous autosomal recessive mouse mutant with developmental defects in organs derived from the urogenital ridge. In surviving adult mutants, adrenocortical dysplasia and hypofunction are predominant features. Adults are infertile due to lack of mature germ cells, and 50% develop hydronephrosis due to ureteral hyperplasia. We report the identification of a splice donor mutation in a novel gene, which is the mouse ortholog of a newly discovered telomeric regulator. This gene (Acd) has recently been characterized as a novel component of the TRF1 protein complex that controls telomere elongation by telomerase. Characterization of Acd transcripts in mutant animals reveals two abnormal transcripts, consistent with a splicing defect. Expression of a wild-type Acd transgene in acd mutants rescues the observed phenotype. Most mutants die within 1-2 days of life on the original genetic background. Analysis of these mutant embryos reveals variable, yet striking defects in caudal specification, limb patterning and axial skeleton formation. In the tail bud, reduced expression of Wnt3a and Dll1 correlates with phenotypic severity of caudal regression. In the limbs, expression of Fgf8 is expanded in the dorsal-ventral axis of the apical ectodermal ridge and shortened in the anterior-posterior axis, consistent with the observed loss of anterior digits in older embryos. The axial skeleton of mutant embryos shows abnormal vertebral fusions in cervical, lumbar and caudal regions. This is the first report to show that a telomeric regulator is required for proper urogenital ridge differentiation, axial skeleton specification and limb patterning in mice.
Genomewide studies and localized candidate gene approaches have become everyday study designs for identifying polymorphisms in genes that influence complex human traits. Yet, in general, the number of significant findings and the need to focus in smaller regions require a prioritization of genes for further study. Some candidate gene identification algorithms have been proposed in recent years to attempt to streamline this prioritization, but many suffer from limitations imposed by the source data or are difficult to use and understand. CANDID is a prioritization algorithm designed to produce impartial, accurate rankings of candidate genes that influence complex human traits. CANDID can use information from publications, protein domain descriptions, cross-species conservation measures, gene expression profiles, and protein-protein interactions in its analysis. Additionally, users may supplement these data sources with results from linkage, association and other studies. CANDID was tested on well-known complex trait genes using data from the Online Mendelian Inheritance in Man (OMIM) database. Additionally, CANDID was evaluated in a modeled gene discovery environment, where it ranked genes whose trait associations were published after CANDID’s databases were compiled. In all settings, CANDID exhibited high sensitivity and specificity, indicating an improvement upon previously published algorithms. Its accuracy and ease of use make CANDID a highly useful tool in study design and analysis for complex human traits.
A strategy for creating potent and pan‐genotypic stimulator of interferon genes (STING) agonists is described. Locking a bioactive U‐shaped conformation of cyclic dinucleotides by introducing a transannular macrocyclic bridge between the nucleic acid bases leads to a topologically novel macrocycle‐bridged STING agonist (MBSA). In addition to substantially enhanced potency, the newly designed MBSAs, exemplified by clinical candidate E7766, exhibit broad pan‐genotypic activity in all major human STING variants. E7766 is shown to have potent antitumor activity with long lasting immune memory response in a mouse liver metastatic tumor model. Two complementary stereoselective synthetic routes to E7766 are also described.
Telomeres serve to protect the ends of chromosomes, and failure to maintain telomeres can lead to dramatic genomic instability. Human TPP1 was identified as a protein which interacts with components of a telomere cap complex, but does not directly bind to telomeric DNA. While biochemical interactions indicate a function in telomere biology, much remains to be learned regarding the roles of TPP1 in vivo. We previously reported the positional cloning of the gene responsible for the adrenocortical dysplasia (acd) mouse phenotype, which revealed a mutation in the mouse homologue encoding TPP1. We find that cells from homozygous acd mice harbor chromosomes fused at telomere sequences, demonstrating a role in telomere protection in vivo. Surprisingly, our studies also reveal fusions and radial structures lacking internal telomere sequences, which are not anticipated from a simple deficiency in telomere protection. Employing spectral karyotyping and telomere FISH in a combined approach, we have uncovered a striking pattern; fusions with telomeric sequences involve nonhomologous chromosomes while those lacking telomeric sequences involve homologues. Together, these studies show that Tpp1/Acd plays a vital role in telomere protection, but likely has additional functions yet to be defined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.