Placental insufficiency, resulting in restriction of fetal substrate supply, is a major cause of intrauterine growth restriction (IUGR) and increased neonatal morbidity. Fetal adaptations to placental restriction maintain the growth of key organs, including the heart, but the impact of these adaptations on individual cardiomyocytes is unknown. Placental and hence fetal growth restriction was induced in fetal sheep by removing the majority of caruncles in the ewe before mating (placental restriction, PR). Vascular surgery was performed on 13 control and 11 PR fetuses at 110-125 days of gestation (term: 150 +/- 3 days). PR fetuses with a mean gestational Po(2) < 17 mmHg were defined as hypoxic. At postmortem (<135 or >135 days), fetal hearts were collected, and cardiomyocytes were isolated and fixed. Proliferating cardiomyocytes were counted by immunohistochemistry of Ki67 protein. Cardiomyocytes were stained with methylene blue to visualize the nuclei, and the proportion of mononucleated cells and length and width of cardiomyocytes were measured. PR resulted in chronic fetal hypoxia, IUGR, and elevated plasma cortisol concentrations. Although there was no difference in relative heart weights between control and PR fetuses, there was an increase in the proportion of mononucleated cardiomyocytes in PR fetuses. Whereas mononucleated and binucleated cardiomyocytes were smaller, the relative size of cardiomyocytes when expressed relative to heart weight was larger in PR compared with control fetuses. The increase in the relative proportion of mononucleated cardiomyocytes and the relative sparing of the growth of individual cardiomyocytes in the growth-restricted fetus are adaptations that may have long-term consequences for heart development in postnatal life.
There is a wealth of evidence to say that sleep impacts maternal health during pregnancy, however, little has been published on fetal health and maternal sleep. This scoping review summarises current literature on maternal sleep including sleep disordered breathing, sleep quality, sleep duration and supine sleep position, as these relate to fetal outcomes specifically birth weight, growth, preterm birth and stillbirth. An overall interpretation of the studies evaluated shows that events occurring during maternal sleep such as obstructive sleep apnea, sleep disruption and sleep position may have a negative effect on the fetus resulting in altered growth, gestational length and even death. These effects are biologically and physically plausible. In conclusion, there is limited and often conflicting information on maternal sleep and fetal outcomes. However, existing evidence suggests that this is an important area for future research. This area is ripe for investigation if there is to be reduction in the physical, emotional, and financial burden of poor fetal outcomes related to maternal sleep.
The placenta is the primary interface between the fetus and mother and plays an important role in maintaining fetal development and growth by facilitating the transfer of substrates and participating in modulating the maternal immune response to prevent immunological rejection of the conceptus. The major substrates required for fetal growth include oxygen, glucose, amino acids and fatty acids, and their transport processes depend on morphological characteristics of the placenta, such as placental size, morphology, blood flow and vascularity. Other factors including insulin-like growth factors, apoptosis, autophagy and glucocorticoid exposure also affect placental growth and substrate transport capacity. Intrauterine growth restriction (IUGR) is often a consequence of insufficiency, and is associated with a high incidence of perinatal morbidity and mortality, as well as increased risk of cardiovascular and metabolic diseases in later life. Several different experimental methods have been used to induce placental insufficiency and IUGR in animal models and a range of factors that regulate placental growth and substrate transport capacity have been demonstrated. While no model system completely recapitulates human IUGR, these animal models allow us to carefully dissect cellular and molecular mechanisms to improve our understanding and facilitate development of therapeutic interventions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.