Loss of p53, a transcription factor activated by cellular stress, is a frequent event in cancer. The role of p53 in tumour suppression is largely attributed to cell fate decisions. Here, we provide evidence supporting a novel role for p53 in the regulation of DNA double-strand break (DSB) repair pathway choice. 53BP1, another tumour suppressor, was initially identified as p53 Binding Protein 1, and has been shown to inhibit DNA end resection, thereby stimulating non-homologous end joining (NHEJ). Yet another tumour suppressor, BRCA1, reciprocally promotes end resection and homologous recombination (HR). Here, we show that in both human and mouse cells, the absence of p53 results in impaired 53BP1 focal recruitment to sites of DNA damage induced by ionizing radiation. This effect is largely independent of cell cycle phase and the extent of DNA damage. In p53-deficient cells, diminished localization of 53BP1 is accompanied by a reciprocal increase in BRCA1 recruitment to DSBs. Consistent with these findings, we demonstrate that DSB repair via NHEJ is abrogated, while repair via homology-directed repair (HDR) is stimulated. Overall, we propose that in addition to its role as an ‘effector’ protein in the DNA damage response, p53 plays a role in the regulation of DSB repair pathway choice.
Highlights d KIF18B, a nuclear kinesin, is required for efficient end-joining of DSBs d A Tudor-interacting motif (TIM) in KIF18B directly interacts with the 53BP1 Tudor d KIF18B's TIM facilitates the binding of 53BP1 to chromatin in the vicinity of DSBs d The motor activity KIF18B is also required for efficient 53BP1 recruitment
The design, synthesis, characterization, and biological activity of a series of platinum(IV) prodrugs containing the axial ligand 3-(4-phenylquinazoline-2-carboxamido)propanoate (L3) are reported. L3 is a derivative of the quinazolinecarboxamide class of ligands that binds to the translocator protein (TSPO) at the outer mitochondrial membrane. The cytotoxicities of cis,cis,trans-[Pt(NH3)2Cl2(L3)(OH)] (C-Pt1), cis,cis,trans-[Pt(NH3)2Cl2(L3)(BZ)] (C-Pt2), trans-[Pt(DACH)(OX)(L3)(OH)] (C-Pt3), and trans-[Pt(DACH)(OX)(L3)(BZ)] (C-Pt4) (DACH: R,R-diaminocyclohexane, BZ: benzoate, OX: oxalate) in MCF-7 breast cancer and noncancerous MCF-10A epithelial cells were assessed and compared with those of cisplatin, oxaliplatin, and the free ligand L3. Moreover, the cellular uptake, ROS generation, DNA damage, and the effect on the mitochondrial function, mitochondrial membrane potential, and morphology were investigated. Molecular interactions of L3 in the TSPO binding site were studied using molecular docking. The results showed that complex C-Pt1 is the most effective Pt(IV) complex and exerts a multimodal mechanism involving DNA damage, potent ROS production, loss of the mitochondrial membrane potential, and mitochondrial damage.
Proteins with RNA-binding activity are increasingly being implicated in DNA damage responses (DDR). Additionally, DNA:RNA-hybrids are rapidly generated around DNA double-strand breaks (DSBs), and are essential for effective repair. Here, using a meta-analysis of proteomic data, we identify novel DNA repair proteins and characterise a novel role for DDX17 in DNA repair. We found DDX17 to be required for both cell survival and DNA repair in response to numerous agents that induce DSBs. Analysis of DSB repair factor recruitment to damage sites suggested a role for DDX17 early in the DSB ubiquitin cascade. Genome-wide mapping of R-loops revealed that while DDX17 promotes the formation of DNA:RNA-hybrids around DSB sites, this role is specific to loci that have low levels of pre-existing hybrids. We propose that DDX17 facilitates DSB repair at loci that are inefficient at forming DNA:RNA-hybrids by catalysing the formation of DSB-induced hybrids, thereby allowing propagation of the damage response.
Ataxia Telangiectasia and Rad3 related (ATR) is one of the main regulators of the DNA damage response. It coordinates cell cycle checkpoint activation, replication fork stability, restart and origin firing to maintain genome integrity. Mutations of the ATR gene have been reported in Seckel patients, who suffer from a rare genetic disease characterized by severe microcephaly and growth retardation. Here, we report the case of a Seckel patient with compound heterozygous mutations in ATR. One allele has an intronic mutation affecting splicing of neighboring exons, the other an exonic missense mutation, producing the variant p.Lys1665Asn, of unknown pathogenicity. We have modeled this novel missense mutation, as well as a previously described missense mutation p.Met1159Ile, and assessed their effect on ATR function. Interestingly, our data indicate that both missense mutations have no direct effect on protein function, but rather result in defective ATR splicing. These results emphasize the importance of splicing mutations in Seckel Syndrome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.