Snorkelers in mangrove forest waters inhabited by the upside-down jellyfish Cassiopea xamachana report discomfort due to a sensation known as stinging water, the cause of which is unknown. Using a combination of histology, microscopy, microfluidics, videography, molecular biology, and mass spectrometry-based proteomics, we describe C. xamachana stinging-cell structures that we term cassiosomes. These structures are released within C. xamachana mucus and are capable of killing prey. Cassiosomes consist of an outer epithelial layer mainly composed of nematocytes surrounding a core filled by endosymbiotic dinoflagellates hosted within amoebocytes and presumptive mesoglea. Furthermore, we report cassiosome structures in four additional jellyfish species in the same taxonomic group as C. xamachana (Class Scyphozoa; Order Rhizostomeae), categorized as either motile (ciliated) or nonmotile types. This inaugural study provides a qualitative assessment of the stinging contents of C. xamachana mucus and implicates mucus containing cassiosomes and free intact nematocytes as the cause of stinging water.
Successful proteomic characterization of biological material depends on the development of robust sample processing methods. The acorn barnacle Amphibalanus amphitrite is a biofouling model for adhesive processes, but the identification of causative proteins involved has been hindered by their insoluble nature. Although effective, existing sample processing methods are labor and time intensive, slowing progress in this field. Here, a more efficient sample processing method is described which exploits pressure cycling technology (PCT) in combination with protein solvents. PCT aids in protein extraction and digestion for proteomics analysis. Barnacle adhesive proteins can be extracted and digested in the same tube using PCT, minimizing sample loss, increasing throughput to 16 concurrently processed samples, and decreasing sample processing time to under 8 hours. PCT methods produced similar proteomes in comparison to previous methods. Two solvents which were ineffective at extracting proteins from the adhesive at ambient pressure (urea and methanol) produced more protein identifications under pressure than highly polar hexafluoroisopropanol, leading to the identification and description of >40 novel proteins at the interface. Some of these have homology to proteins with elastomeric properties or domains involved with protein-protein interactions, while many have no sequence similarity to proteins in publicly available databases, highlighting the unique adherent processes evolved by barnacles. The methods described here can not only be used to further characterize barnacle adhesive to combat fouling, but may also be applied to other recalcitrant biological samples, including aggregative or fibrillar protein matrices produced during disease, where a lack of efficient sample processing methods has impeded advancement. Data are available via ProteomeXchange with identifier PXD012730.
Diet alters Drosophila melanogaster mate preference and attractiveness Animals decide which potential mate to pair with based on their subjective evaluation of each candidate mate's attractiveness. Attractiveness and its perception are plastic traits, dependent upon genetic and environmental factors. When evaluating mate attractiveness, in some cases animals make predictive judgements of mate reproductive potential, or fitness, based on the mate's condition. Diet, a fluctuating environmental factor, influences health and conditional states. However, how dietary enrichment of individual macronutrients (fat, protein, or sugar) affects behaviour, mate choice, and reproductive outcomes in both sexes is not fully understood. Here we show that a moderate increase in dietary macronutrients alters attractiveness, mate preference, and reproductive output of Drosophila melanogaster. Our results demonstrate that diet is an important factor in determining mating behavior and reproductive output, acting in a sex-specific fashion. These findings provide a framework for exploring the genetic mechanisms that drive changes in mating behaviour, fitness, and, hence, trait evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.