This study systematically analyzes platelet-derived growth factor (PDGF) receptor expression in six types of common tumors as well as examines associations between PDGF -receptor status and clinicopathological characteristics in breast cancer. PDGF receptor expression was determined by immunohistochemistry on tumor tissue microarrays. Breast tumor data were combined with prognostic factors and related to outcome endpoints. PDGF ␣-and -receptors were independently expressed, at variable frequencies, in the tumor stroma of all tested tumor types. There was a significant association between PDGF -receptor expression on fibroblasts and perivascular cells in individual colon and prostate tumors. In breast cancer, high stromal PDGF -receptor expression was significantly associated with high histopathological grade, estrogen receptor negativity, and high HER2 expression. High stromal PDGF -receptor expression was correlated with significantly shorter recurrence-free and breast cancer-specific survival. The prognostic significance of stromal PDGF -receptor expression was particularly prominent in tumors from premenopausal women. Stromal PDGF ␣-and -receptor expression is a common, but variable and independent, property of solid tumors. In breast cancer, stromal PDGF -receptor expression significantly correlates with less favorable clinicopatho-
Improved methods are needed for in situ characterization of post-translational modifications in cell lines and tissues. For example, it is desirable to monitor the phosphorylation status of individual receptor tyrosine kinases in samples from human tumors treated with inhibitors to evaluate therapeutic responses. Unfortunately the leading methods for observing the dynamics of tissue post-translational modifications in situ, immunohistochemistry and immunofluorescence, exhibit limited sensitivity and selectivity. Proximity ligation assay is a novel method that offers improved selectivity through the requirement of dual recognition and increased sensitivity by including DNA amplification as a component of detection of the target molecule. Here we therefore established a generalized in situ proximity ligation assay to investigate phosphorylation of platelet-derived growth factor receptor  (PDGFR) in cells stimulated with platelet-derived growth factor BB. Antibodies specific for immunoglobulins from different species, modified by attachment of DNA strands, were used as secondary proximity probes together with a pair of primary antibodies from the corresponding species. Dual recognition of receptors and phosphorylated sites by the primary antibodies in combination with the secondary proximity probes was used to generate circular DNA strands; this was followed by signal amplification by replicating the DNA circles via rolling circle amplification. We detected tyrosine phosphorylated PDGFR in human embryonic kidney cells stably overexpressing human influenza hemagglutinin-tagged human PDGFR in porcine aortic endothelial cells transfected with the -receptor, but not in cells transfected with the ␣-receptor, and also in immortalized human foreskin fibroblasts, BJ hTert, endogenously expressing the PDGFR. We furthermore visualized tyrosine phosphorylated PDGFR in tissue sections from fresh frozen human scar tissue undergoing wound healing. The method should be of great value to study signal transduction, screen for effects of pharmacological agents, and enhance the diagnostic potential in histopathology. Molecular & Cellular Proteomics 6:1500 -1509, 2007.
BackgroundThe identification of new prognostic markers for prostate cancer is highly warranted, since it is difficult to identify patients requiring curative treatment. Data from both experimental models and clinical samples have identified important functions of PDGFRβ on pericytes and fibroblasts in the tumor stroma.Methodology/Principal FindingsIn this study the prognostic significance of PDGFRβ in prostate cancer stroma, and in matched non-malignant tissue, was evaluated with immunohistochemistry. PDGFRβ expression was analyzed in normal and tumor stroma from more than 300 prostate cancer patients. High PDGFRβ expression in tumor stroma was associated with large tumor size, advanced stage, high Gleason score and high vessel density. Perivascular PDGFRβ staining in tumors was also correlated with high Gleason score. Correlations were also observed between PDGFRβ status in tumor stroma and non-malignant stroma. Similarly, high PDGFRβ expression in adjacent non-malignant tissue stroma correlated with large tumor size, advanced stage, high Gleason score and proliferation in non-malignant epithelium. Interestingly, high levels of PDGFRβ in the stroma of tumor and non-malignant tissue were associated with shorter cancer specific survival in prostate cancer patients.Conclusions/SignificanceThe study revealed a number of novel associations between stromal PDGFRβ expression in prostate tumors and several important clinical characteristics, including survival.
Background A better definition of biomarkers and biological processes related to local recurrence and disease progression is highly warranted for ductal breast carcinoma in situ (DCIS). Stromal–epithelial interactions are likely of major importance for the biological, clinical, and pathological distinctions between high- and low-risk DCIS cases. Methods Stromal platelet derived growth factor receptor (PDGFR) was immunohistochemically assessed in two DCIS patient cohorts (n = 458 and n = 80). Cox proportional hazards models were used to calculate the hazard ratios of recurrence. The molecular mechanisms regulating stromal PDGFR expression were investigated in experimental in vitro co-culture systems of DCIS cells and fibroblasts and analyzed using immunoblot and quantitative real-time PCR. Knock-out of JAG1 in DCIS cells and NOTCH2 in fibroblasts was obtained through CRISPR/Cas9. Experimental data were validated by mammary fat pad injection of DCIS and DCIS-JAG1 knock-out cells (10 mice per group). All statistical tests were two-sided. Results PDGFRα(low)/PDGFRβ(high) fibroblasts were associated with increased risk for recurrence in DCIS (univariate hazard ratio = 1.59, 95% confidence interval [CI] = 1.02 to 2.46; P = .04 Wald test; multivariable hazard ratio = 1.78, 95% CI = 1.07 to 2.97; P = .03). Tissue culture and mouse model studies indicated that this fibroblast phenotype is induced by DCIS cells in a cell contact-dependent manner. Epithelial Jagged1 and fibroblast Notch2 were identified through loss-of-function studies as key juxtacrine signaling components driving the formation of the poor prognosis-associated fibroblast phenotype. Conclusions A PDGFRα(low)/PDGFRβ(high) fibroblast subset was identified as a marker for high-risk DCIS. The Jagged-1/Notch2/PDGFR stroma–epithelial pathway was described as a novel signaling mechanism regulating this poor prognosis-associated fibroblast subset. In general terms, the study highlights epithelial–stromal crosstalk in DCIS and contributes to ongoing efforts to define clinically relevant fibroblast subsets and their etiology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.