Distal renal tubular acidosis (dRTA) is an inherited disease characterized by the failure of the kidneys to appropriately acidify urine and is associated with mutations in the anion exchanger (AE)1 gene. The effect of the R589H dRTA mutation on the expression of the human erythroid AE1 and the truncated kidney form (kAE1) was examined in transfected human embryonic kidney 293 cells. AE1, AE1 R589H, and kAE1 were present at the cell surface, whereas kAE1 R589H was located primarily intracellularly as shown by immunofluorescence, cell surface biotinylation, N-glycosylation, and anion transport assays. Coexpression of kAE1 R589H reduced the cell surface expression of kAE1 and AE1 by a dominant-negative effect, due to heterodimer formation. The mutant AE1 and kAE1 bound to an inhibitor affinity resin, suggesting that they were not grossly misfolded. Other mutations at R589 also prevented the formation of the cell surface form of kAE1, indicating that this conserved arginine residue is important for proper trafficking. The R589H dRTA mutation creates a severe trafficking defect in kAE1 but not in erythroid AE1.
Autosomal dominant distal renal tubular acidosis (dRTA) has been associated with several mutations in the anion exchanger AE1 gene. The effect of an 11-amino-acid C-terminal dRTA truncation mutation (901 stop) on the expression of kidney AE1 (kAE1) and erythroid AE1 was examined in transiently transfected HEK-293 cells. Unlike the wild-type proteins, kAE1 901 stop and AE1 901 stop mutants exhibited impaired trafficking from the endoplasmic reticulum to the plasma membrane as determined by immunolocalization, cell-surface biotinylation, oligosaccharide processing and pulse-chase experiments. The 901 stop mutants were able to bind to an inhibitor affinity resin, suggesting that these mutant membrane proteins were not grossly misfolded. Co-expression of wild-type and mutant kAE1 or AE1 resulted in intracellular retention of the wild-type proteins in a pre-medial Golgi compartment. This dominant negative effect was due to hetero-oligomer formation of the mutant and wild-type proteins. Intracellular retention of kAE1 in the alpha-intercalated cells of the kidney would account for the impaired acid secretion into the urine characteristic of dRTA.
Hereditary spherocytosis (HS) is a common inherited hemolytic anemia caused by mutations in erythrocyte proteins including the anion exchanger, AE1 (band 3). This study examined seven missense mutations (L707P, R760Q, R760W, R808C, H834P, T837M, and R870W) located in the membrane domain of the human AE1 that are associated with this disease. The HS mutants, constructed in full-length AE1 cDNA, could be transiently expressed to similar levels in HEK 293 cells. Immunofluorescence, cell surface biotinylation, and pulse chase labeling showed that the HS mutants all exhibited defective cellular trafficking from the endoplasmic reticulum to the plasma membrane. Impaired binding to an inhibitor affinity matrix indicated that the mutant proteins had non-native structures and may be misfolded. Further characterization of the HS R760Q mutant showed no change in its oligomeric structure or turnover (half-life = 15 h) compared to wild-type AE1, suggesting the mutant was not aggregated or targeted for rapid degradation via the proteasome. Intracellular retention of HS mutant AE1 would lead to destruction of the protein during erythroid development and would account for the lack of HS mutant AE1 in the plasma membrane of the mature red cell.
The human erythrocyte anion exchanger (AE)1 (Band 3) contains a single complex N-linked oligosaccharide that is attached to Asn'%# in the fourth extracellular loop of this polytopic membrane protein, while other isoforms (AE2, AE3 and trout AE1) are Nglycosylated on the preceding extracellular loop. Human AE1 expressed in transfected human embryonic kidney (HEK)-293 or COS-7 cells contained a high-mannose oligosaccharide. The lack of oligosaccharide processing was not due to retention of AE1 in the endoplasmic reticulum since biotinylation assays showed that approx. 30 % of the protein was expressed at the cell surface. Moving the N-glycosylation site to the preceding extracellular loop in an AE1 glycosylation mutant (N555) resulted in processing of the oligosaccharide and production of a complex form of AE1. A double N-glycosylation mutant (N555\N642) contained both a high-mannose and a complex oligosaccharide chain. The complex form of the N555 mutant could be bio-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.