Understanding how landscape characteristics affect biodiversity patterns and ecological processes at local and landscape scales is critical for mitigating effects of global environmental change. In this review, we use knowledge gained from human-modified landscapes to suggest eight hypotheses, which we hope will encourage more systematic research on * Address for correspondence (E-mail: ttschar@gwdg.de).Biological Reviews 87 (2012) 661-685 © 2012 The Authors. Biological Reviews © 2012 Cambridge Philosophical Society 662 Teja Tscharntke and others the role of landscape composition and configuration in determining the structure of ecological communities, ecosystem functioning and services. We organize the eight hypotheses under four overarching themes. Section A: 'landscape moderation of biodiversity patterns' includes (1) the landscape species pool hypothesis-the size of the landscape-wide species pool moderates local (alpha) biodiversity, and (2) the dominance of beta diversity hypothesis-landscapemoderated dissimilarity of local communities determines landscape-wide biodiversity and overrides negative local effects of habitat fragmentation on biodiversity. Section B: 'landscape moderation of population dynamics' includes (3) the cross-habitat spillover hypothesis-landscape-moderated spillover of energy, resources and organisms across habitats, including between managed and natural ecosystems, influences landscape-wide community structure and associated processes and (4) the landscape-moderated concentration and dilution hypothesis-spatial and temporal changes in landscape composition can cause transient concentration or dilution of populations with functional consequences. Section C: 'landscape moderation of functional trait selection' includes (5) the landscape-moderated functional trait selection hypothesis-landscape moderation of species trait selection shapes the functional role and trajectory of community assembly, and (6) the landscape-moderated insurance hypothesis-landscape complexity provides spatial and temporal insurance, i.e. high resilience and stability of ecological processes in changing environments. Section D: 'landscape constraints on conservation management' includes (7) the intermediate landscape-complexity hypothesis-landscapemoderated effectiveness of local conservation management is highest in structurally simple, rather than in cleared (i.e. extremely simplified) or in complex landscapes, and (8) the landscape-moderated biodiversity versus ecosystem service management hypothesis-landscape-moderated biodiversity conservation to optimize functional diversity and related ecosystem services will not protect endangered species. Shifting our research focus from local to landscape-moderated effects on biodiversity will be critical to developing solutions for future biodiversity and ecosystem service management.
Summary1. The efficiency of agricultural subsidy programmes for preserving biodiversity and improving the environment has been questioned in recent years. Organic farming operates without pesticides, herbicides and inorganic fertilizers, and usually with a more diverse crop rotation. It has been suggested that this system enhances biodiversity in agricultural landscapes. We analysed the effects of organic farming on species richness and abundance using meta-analysis of literature published before December 2002. 2. Organic farming usually increases species richness, having on average 30% higher species richness than conventional farming systems. However, the results were variable among studies, and 16% of them actually showed a negative effect of organic farming on species richness. We therefore divided the data into different organism groups and according to the spatial scale of the study. 3. Birds, insects and plants usually showed an increased species richness in organic farming systems. However, the number of studies was low in most organism groups (range 2-19) and there was significant heterogeneity between studies. The effect of organic farming was largest in studies performed at the plot scale. In studies at the farm scale, when organic and conventional farms were matched according to landscape structure, the effect was significant but highly heterogeneous. 4. On average, organisms were 50% more abundant in organic farming systems, but the results were highly variable between studies and organism groups. Birds, predatory insects, soil organisms and plants responded positively to organic farming, while non-predatory insects and pests did not. The positive effects of organic farming on abundance were prominent at the plot and field scales, but not for farms in matched landscapes. Synthesis and applications.Our results show that organic farming often has positive effects on species richness and abundance, but that its effects are likely to differ between organism groups and landscapes. We suggest that positive effects of organic farming on species richness can be expected in intensively managed agricultural landscapes, but not in small-scale landscapes comprising many other biotopes as well as agricultural fields. Measures to preserve and enhance biodiversity should be more landscape-and farmspecific than is presently the case.
The benefits of organic farming to biodiversity in agricultural landscapes continue to be hotly debated, emphasizing the importance of precisely quantifying the effect of organic vs. conventional farming. We conducted an updated hierarchical meta-analysis of studies that compared biodiversity under organic and conventional farming methods, measured as species richness. We calculated effect sizes for 184 observations garnered from 94 studies, and for each study, we obtained three standardized measures reflecting land-use intensity. We investigated the stability of effect sizes through time, publication bias due to the ‘file drawer’ problem, and consider whether the current literature is representative of global organic farming patterns. On average, organic farming increased species richness by about 30%. This result has been robust over the last 30 years of published studies and shows no sign of diminishing. Organic farming had a greater effect on biodiversity as the percentage of the landscape consisting of arable fields increased, that is, it is higher in intensively farmed regions. The average effect size and the response to agricultural intensification depend on taxonomic group, functional group and crop type. There is some evidence for publication bias in the literature; however, our results are robust to its impact. Current studies are heavily biased towards northern and western Europe and North America, while other regions with large areas of organic farming remain poorly investigated. Synthesis and applications. Our analysis affirms that organic farming has large positive effects on biodiversity compared with conventional farming, but that the effect size varies with the organism group and crop studied, and is greater in landscapes with higher land-use intensity. Decisions about where to site organic farms to maximize biodiversity will, however, depend on the costs as well as the potential benefits. Current studies have been heavily biased towards agricultural systems in the developed world. We recommend that future studies pay greater attention to other regions, in particular, areas with tropical, subtropical and Mediterranean climates, in which very few studies have been conducted.
No abstract
Spatially explicit forecasting of changes in species richness is key to designing informative scenarios on the development of diversity on our planet. It might be possible to predict changes in the richness of inadequately investigated groups from that of groups for which enough information is available. Here we evaluate the reliability of this approach by reviewing 237 richness correlations extracted from the recent literature. Of the 43 taxa covered, beetles, vascular plants, butterflies, birds, ants, and mammals (in that order) were the most common ones examined. Forests and grasslands strongly dominated the ecosystem types studied. The variance explanation (R2) could be calculated for 152 cases, but only 53 of these were significant. An average correlation effect size of 0.374 (95% CI = +/- 0.0678) indicates positive but weak correlations between taxa within the very heterogeneous data set; None of the examined explanatory variables (spatial scale, taxonomic distance, trophic position, biome) could account for this heterogeneity. However, studies focusing on 10-km2 grid cells had the highest variance explanation. Moreover, within-phylum between-class comparisons had marginally significantly lower correlations than between-phylum comparisons. And finally, the explanatory power of studies conducted in the tropics was significantly higher than that of studies conducted in temperate regions. It is concluded that the potential of a correlative approach to species richness is strongly diminished by the overall low level of variance explanation. So far, no taxon has proved to be a universal or even particularly good predictor for the richness of other taxa. Some suggestions for future research are inclusion of several taxa in models aiming at regional richness predictions, improvement of knowledge on species correlations in human dominated systems, and a better understanding of mechanisms underlying richness correlations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.