Abstract. The objective of this research is to improve traffic safety through collecting and distributing up-to-date road surface condition information using mobile phones. Road surface condition information is seen useful for both travellers and for the road network maintenance. The problem we consider is to detect road surface anomalies that, when left unreported, can cause wear of vehicles, lesser driving comfort and vehicle controllability, or an accident. In this work we developed a pattern recognition system for detecting road condition from accelerometer and GPS readings. We present experimental results from real urban driving data that demonstrate the usefulness of the system. Our contributions are: 1) Performing a throughout spectral analysis of tri-axis acceleration signals in order to get reliable road surface anomaly labels. 2) Comprehensive preprocessing of GPS and acceleration signals. 3) Proposing a speed dependence removal approach for feature extraction and demonstrating its positive effect in multiple feature sets for the road surface anomaly detection task. 4) A framework for visually analyzing the classifier predictions over the validation data and labels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.