K. 2003. Effects of host shading on consumption and growth of the geometrid Epirrita autumnata: interactive roles of water, primary and secondary compounds. -Oikos 103: 3 -16.Shading is assumed to reduce allocation to plant phenolics and to defense in general. We here report the results of experimental shading of individual branches or whole canopies in mountain birch on foliar chemistry and on the growth and consumption of a geometrid, Epirrita autumnata. Branch-wide shading tended to have at least as strong effects on both leaf chemistry and herbivore performance as canopy-wide shading, indicating local responses of the host to shading. Responses to shading varied among the key leaf traits. Leaf water content was higher and toughness lower in shaded than in non-shaded leaves. Leaf sugars were lower and protein-bound and free amino acids higher in shaded than in control leaves. Sucrose and galactose were at high levels in unshaded branches adjacent to shaded ones, suggesting that partial shading enhanced translocation of sugars within canopies. Total phenolics and soluble proanthocyanidins were low in both shading treatments. Of the other phenolic groups, concentrations of gallotannins and cell-wall-bound proanthocyanidins did not differ between shaded and non-shaded leaves. Epirrita larvae grew better in both types of shading treatments compared to either unshaded control trees or to unshaded branches in the branch-shading trees. By far the most important correlate of larval growth was the amount of water consumed with leaf mass (r= 0.94). When variance in water intake was standardized (also largely eliminating parallel variation in proteins), fructose and glucose still had significant positive correlations and proanthocyanidins negative with larval growth on control but not on shade leaves. Concentrations of several phenolic compounds correlated negatively with intake of dry matter and especially water, and different phenolics were important in shaded (gallotannins) and in control (flavonoids) leaves. Our findings strongly suggest that the effects of putatively defensive leaf traits on insect consumption and growth interact with nutritive leaf traits, particularly with water.
This study compared the effects of shading individual branches or whole trees on the survival, growth and reproduction of branches of mountain birch [Betula pubescens ssp. czerepanovii (Orlova) Hämet-Ahti]. When a single branch was shaded its performance decreased drastically, while individual branches performed relatively well if the whole tree was shaded. For instance, after two summers 90% of the individually shaded branches were dead, while none of the study branches died following shading of entire trees. These results indicate that the fate of a branch depended more on shading-induced asymmetric competition among branches than on the shading itself. Furthermore, the increased growth of non-shaded branches in the trees where only two branches were shaded suggests that resources were preferentially allocated to branches in more favorable positions. Branch autonomy may promote environmental screening and growth towards favorable directions, optimizing the use of available light resources. In addition, branch autonomy may buffer the genet against environmental hazards, thus increasing the fitness of the genet at the cost of an increased mortality for individual modules.
In order to assess the role of parasitoids in the regulation of non-outbreaking populations of Epirrita autumnata, a geometrid lepidopteran with outbreaking populations in northern Europe, we examined the temporal and spatial variation of larval parasitism in southwestern Finland during 6 successive years. The study was carried out on two spatial scales, among trees within sites of about 1 ha and among sites separated by distances of 2-10 km, using experimental and observational approaches respectively. The overall percent parasitism was independent of host density on both spatial scales, while temporally it fluctuated only little. Of the two main parasitoids, the commoner one, Protapanteles immunis, showed a variable response to host density on the larger spatial scale and negative density dependence on the smaller scale. Temporally, parasitism caused by this species was independent of host density. Another parasitoid, Phobocampe bicingulata, showed positive density dependence on the smaller spatial scale and had a variable response on the larger scale, but exhibited negative density dependence over time. The results of this study caution against drawing conclusions concerning population regulation on the grounds of spatial density dependence alone. Larval parasitoids apparently do not maintain low densities in the E. autumnata populations studied. However, they may suppress E. autumnata densities to a level low enough for density-dependent mortality factor(s) to become regulating. Among other mortality factors of E. autumnata, pupal predation has been found to be temporally positively density-dependent.
We investigated whether genetic variation of a common foliar endophyte of birch trees, Venturia ditricha, is affected by environmental conditions or host genotype. Fungal samples were collected from 10 half-sibling families of mountain birch (Betula pubescens ssp. czerepanovii) grown in two environmental conditions with different daily average temperatures: a forested river valley and an adjacent open tundra (altitudinal difference 180 m). Genetic analysis of V. ditricha isolates was done using random amplified microsatellite polymerase chain reaction. We found that host genotypes, along with prevailing environmental conditions, influence the probability of infection by particular endophyte genotypes. The most susceptible host genotypes were highly infected with genetically similar endophyte genotypes, whereas the most resistant trees were poorly infected and they were infected by genetically dissimilar endophytes. Our results also showed environment-host genotype interactions, suggesting that the susceptibility of the host to a particular endophyte genotype may change in natural environments when environmental conditions are changed. It appears that a particular endophyte genotype needs to find the right host genotype for a successful infection. There are many host genotypes in natural stands; this means, from the point of view of the fungus, the environment is heterogeneous. Thus, under the influence of birch tree genotypes, genetically differentiated subgroups of the endophytic fungus may be formed in different environments.
We investigated whether genetic variation of a common foliar endophyte of birch trees, Venturia ditricha, is affected by environmental conditions or host genotype. Fungal samples were collected from 10 half-sibling families of mountain birch (Betula pubescens ssp. czerepanovii) grown in two environmental conditions with different daily average temperatures: a forested river valley and an adjacent open tundra (altitudinal difference 180 m). Genetic analysis of V. ditricha isolates was done using random amplified microsatellite polymerase chain reaction. We found that host genotypes, along with prevailing environmental conditions, influence the probability of infection by particular endophyte genotypes. The most susceptible host genotypes were highly infected with genetically similar endophyte genotypes, whereas the most resistant trees were poorly infected and they were infected by genetically dissimilar endophytes. Our results also showed environment-host genotype interactions, suggesting that the susceptibility of the host to a particular endophyte genotype may change in natural environments when environmental conditions are changed. It appears that a particular endophyte genotype needs to find the right host genotype for a successful infection. There are many host genotypes in natural stands; this means, from the point of view of the fungus, the environment is heterogeneous. Thus, under the influence of birch tree genotypes, genetically differentiated subgroups of the endophytic fungus may be formed in different environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.