In recent years the number of active controllable joints in electrically powered hand-prostheses has increased significantly. However, the control strategies for these devices in current clinical use are inadequate as they require separate and sequential control of each degree-of-freedom (DoF). In this study we systematically compare linear and nonlinear regression techniques for an independent, simultaneous and proportional myoelectric control of wrist movements with two DoF. These techniques include linear regression, mixture of linear experts (ME), multilayer-perceptron, and kernel ridge regression (KRR). They are investigated offline with electro-myographic signals acquired from ten able-bodied subjects and one person with congenital upper limb deficiency. The control accuracy is reported as a function of the number of electrodes and the amount and diversity of training data providing guidance for the requirements in clinical practice. The results showed that KRR, a nonparametric statistical learning method, outperformed the other methods. However, simple transformations in the feature space could linearize the problem, so that linear models could achieve similar performance as KRR at much lower computational costs. Especially ME, a physiologically inspired extension of linear regression represents a promising candidate for the next generation of prosthetic devices.
Myoelectric control of a prosthetic hand with more than one degree of freedom (DoF) is challenging, and clinically available techniques require a sequential actuation of the DoFs. Simultaneous and proportional control of multiple DoFs is possible with regression-based approaches allowing for fluent and natural movements. Conventionally, the regressor is calibrated in an open-loop with training based on recorded data and the performance is evaluated subsequently. For individuals with amputation or congenital limb-deficiency who need to (re)learn how to generate suitable muscle contractions, this open-loop process may not be effective. We present a closed-loop real-time learning scheme in which both the user and the machine learn simultaneously to follow a common target. Experiments with ten able-bodied individuals show that this co-adaptive closed-loop learning strategy leads to significant performance improvements compared to a conventional open-loop training paradigm. Importantly, co-adaptive learning allowed two individuals with congenital deficiencies to perform simultaneous 2-D proportional control at levels comparable to the able-bodied individuals, despite having to a learn completely new and unfamiliar mapping from muscle activity to movement trajectories. To our knowledge, this is the first study which investigates man-machine co-adaptation for regression-based myoelectric control. The proposed training strategy has the potential to improve myographic prosthetic control in clinically relevant settings.
Myoelectric hand prostheses are usually controlled with two bipolar electrodes located on the flexor and extensor muscles of the residual limb. With clinically established techniques, only one function can be controlled at a time. This is cumbersome and limits the benefit of additional functions offered by modern prostheses. Extensive research has been conducted on more advanced control techniques, but the clinical impact has been limited, mainly due to the lack of reliability in real-world conditions. We implemented a regression-based control approach that allows for simultaneous and proportional control of two degrees of freedom and evaluated it on five prosthetic end users. In the evaluation of tasks mimicking daily life activities, we included factors that limit reliability, such as tests in different arm positions and on different days. The regression approach was robust over multiple days and only slightly affected by changing in the arm position. Additionally, the regression approach outperformed two clinical control approaches in most conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.