A semi-physical model for the simulation of oil, gas and biomass space heating boilers has been parameterized based on measurements on nine different boiler units and simulation results have been compared to results obtained from measurements in steady state and transient operation. Although the agreement between simulated and measured boiler efficiencies was within the range of measurement uncertainties in most cases, model improvements are expected to be possible concerning the heat capacitance modelling in cycling on/off operation as well as influences of start and stop behaviour on the overall efficiency. It is found that electricity consumption during cycling on/off operation of small pellets or oil space heating boilers may have a significant influence on the overall energy balance of these units. This influence increases strongly with decreasing heat load and increasing number of on/off cycles.
SUMMARYThis paper describes a model of heat transfer for the convection section of a biomass boiler. The predictions obtained with the model are compared to the measurement results from two boilers, a 50 kW th pellet boiler and a 4000 kW th wood chips boiler. An adequate accuracy was achieved on the wood chips boiler. As for the pellet boiler, the calculated and measured heat transfer rates differed more than expected on the basis of the inaccuracies in correlation reported in the literature. The most uncertain aspect of the model was assumed to be the correlation equation of the entrance region. Hence, the model was adjusted to improve the correlation. As a result of this, a high degree of accuracy was also obtained with the pellet boiler. The next step was to analyse the effect of design and the operating parameters on the pellet boiler. Firstly, the portion of radiation was established at 3-13 per cent, and the portion of entrance region at 39-52 per cent of the entire heat transfer rate under typical operating conditions. The effect of natural convection was small. Secondly, the heat transfer rate seemed to increase when dividing the convection section into more passes, even when the heat transfer surface area remained constant. This is because the effect of the entrance region is recurrent. Thirdly, when using smaller tube diameters the heat transfer area is more energy-efficient, even when the bulk velocity of the flow remains constant.
SUMMARYA boiler plant is presented, in which the fuel is dried before combustion in a silo with air. The drying air is heated in a recuperative heat exchanger by the heat of flue gases. Hot air is then blown through the bed of fuel in the drying silo, while the fuel dries and the air cools down and becomes humidified. Heat of the moist exhaust air of the silo is recovered for the drying air and combustion air by a recuperative heat exchanger. Modelling of the thermal behaviour of the plant helps in understanding complex interdependencies of the two heat exchangers, the boiler and the dryer. The models of the heat exchangers and applications in analysing the boiler system are described in this paper. Calculating the combinations of extreme operational conditions gives the input data needed in comparing different types of heat exchangers, dimensioning the heat transfer area, choosing the control strategy and selecting the operating parameters and set-values of the control system. Results of verification measurements and practical operation at a 40 kW th pilot plant and a 500 kW th demonstration plant are also discussed. Using engineering correlation formulas for heat and mass transfer, an adequate accuracy between the model and the measurements was achieved.Fouling was detected to be a major problem with the flue gas heat exchanger. However, in absence of condensation, the increase of a fouling layer with respect to time was observed to be low. Fouling was also a problem with the drying exhaust gas heat exchanger, but after the installation of a simple dust collector, a reasonable cleaning period was achieved. A mixed-flow configuration was found to be the most appropriate for the flue gas heat exchanger. In order to avoid condensation of the flue gas the drying exhaust gas heat exchanger is indispensable in Finnish climate in the considered system. In addition to this, it decreases the need of fuel. A parallel-flow type was found the most appropriate as the drying exhaust gas heat exchanger.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.