The prevalence of the metabolic syndrome (MS) is rapidly increasing all over the world. Consequently, there is an urgent need for more effective intervention strategies. Both animal and human studies indicate that lipid oversupply to skeletal muscle can result in insulin resistance, which is one of the characteristics of the MS. C57BL/6J mice were fed a low-fat (10 kcal%) palm oil diet or a high-fat (45 kcal%; HF) palm oil diet for 3 or 28 days. By combining transcriptomics with protein and lipid analyses we aimed to better understand the molecular events underlying the early onset of the MS. Short-term HF feeding led to altered expression levels of genes involved in a variety of biological processes including morphogenesis, energy metabolism, lipogenesis, and immune function. Protein analysis showed increased levels of the myosin heavy chain, slow fiber type protein, and the complexes I, II, III, IV, and V of the oxidative phosphorylation. Furthermore, we observed that the main mitochondrial membrane phospholipids, phosphatidylcholine and phosphatidylethanolamine, contained more saturated fatty acids. Altogether, these results point to a morphological as well as a metabolic adaptation by promoting a more oxidative fiber type. We hypothesize that after this early positive adaptation, a continued transcriptional downregulation of genes involved in oxidative phosphorylation will result in decreased oxidative capacity at a later stage. Together with increased saturation of phospholipids of the mitochondrial membrane this can result in decreased mitochondrial function, which is a hallmark observed in insulin resistance and Type 2 diabetes.
BackgroundOptimal energy and protein provision through enteral nutrition is essential for critically ill patients. However, in clinical practice, the intake achieved is often far below the recommended targets. Because no polymeric formula with sufficient protein content is available, adequate protein intake can be achieved only by supplemental amino acids or semi-elemental formula administration. In the present study, we investigated whether protein intake can be increased with a new, very high intact-protein formula (VHPF) for enteral feeding.MethodsIn this randomized, controlled, double-blind, multicenter trial, 44 overweight (body mass index ≥ 25 kg/m2) intensive care unit patients received either a VHPF (8 g/100 kcal) or a commercially available standard high protein formula (SHPF) (5 g/100 kcal). Protein and energy intake, gastrointestinal tolerance (gastric residual volume, vomiting, diarrhea, and constipation), adverse events, and serious adverse events were recorded. Total serum amino acid levels were measured at baseline and day 5.ResultsThe primary outcome, protein intake at day 5, was 1.49 g/kg body weight (95% CI 1.21–1.78) and 0.76 g/kg body weight (95% CI 0.49–1.03, P < 0.001) for VHPF and SHPF, respectively. Daily protein intake was statistically significantly higher in the VHPF group compared with the SHPF group from day 2 to day 10. Protein intake in the VHPF group as a percentage of target (1.5 g/kg ideal body weight) was 74.7% (IQR 53.2–87.6%) and 111.6% (IQR 51.7–130.7%) during days 1–3 and days 4–10, respectively. Serum amino acid concentrations were higher at day 5 in the VHPF group than in the SHPF group (P = 0.031). No differences were found in energy intake, measures of gastrointestinal tolerance, and safety.ConclusionsEnteral feeding with VHPF (8 g/100 kcal) resulted in higher protein intake and plasma amino acid concentrations than an isocaloric SHPF (5 g/100 kcal), without an increase in energy intake. This VHPF facilitates feeding according to nutritional guidelines and is suitable as a first-line nutritional treatment for critically ill overweight patients.Trial registrationNetherlands Trial Register, NTR5643. Registered on 2 February 2016.Electronic supplementary materialThe online version of this article (10.1186/s13054-018-2070-5) contains supplementary material, which is available to authorized users.
Background: Skeletal muscle is responsible for most of the insulin-stimulated glucose uptake and metabolism. Therefore, it plays an important role in the development of insulin resistance, one of the characteristics of the metabolic syndrome (MS). As the prevalence of the MS is increasing, there is an urgent need for more effective intervention strategies. Methods: C57BL/6J mice were fed an 8-week low-fat diet (10 kcal%; LFD) or high-fat diet (45 kcal%; HFD). Microarray analysis was performed by using two comparisons: (1) 8-week HFD transcriptome versus 8-week LFD transcriptome and (2) transcriptome of mice sacrificed at the start of the intervention versus 8-week LFD transcriptome and 8-week HFD transcriptome, respectively. Results: Although an 8-week HFD induced obesity and impaired insulin sensitivity, HFD-responsive changes in the muscle transcriptome were relatively small (<1.3-fold). In fact, 8-weeks of aging induced more pronounced changes than an HFD. One comparison revealed the transcriptional downregulation of the mito- gen-activated protein kinase cascade, whereas both comparisons showed the upregulation of fatty acid oxidation, demonstrating that the two comparison strategies are confirmative as well as complementary. Conclusion: We suggest using complementary analysis strategies in the genome-wide search for gene expression changes induced by mild interventions, such as an HFD.
BackgroundType 2 diabetes mellitus and muscle insulin resistance have been associated with reduced capacity of skeletal muscle mitochondria, possibly as a result of increased intake of dietary fat. Here, we examined the hypothesis that a prolonged high-fat diet consumption (HFD) increases the saturation of muscle mitochondrial membrane phospholipids causing impaired mitochondrial oxidative capacity and possibly insulin resistance.MethodologyC57BL/6J mice were fed an 8-week or 20-week low fat diet (10 kcal%; LFD) or HFD (45 kcal%). Skeletal muscle mitochondria were isolated and fatty acid (FA) composition of skeletal muscle mitochondrial phospholipids was analyzed by thin-layer chromatography followed by GC. High-resolution respirometry was used to assess oxidation of pyruvate and fatty acids by mitochondria. Insulin sensitivity was estimated by HOMA-IR.Principal FindingsAt 8 weeks, mono-unsaturated FA (16∶1n7, 18∶1n7 and 18∶1n9) were decreased (−4.0%, p<0.001), whereas saturated FA (16∶0) were increased (+3.2%, p<0.001) in phospholipids of HFD vs. LFD mitochondria. Interestingly, 20 weeks of HFD descreased mono-unsaturated FA while n-6 poly-unsaturated FA (18∶2n6, 20∶4n6, 22∶5n6) showed a pronounced increase (+4.0%, p<0.001). Despite increased saturation of muscle mitochondrial phospholipids after the 8-week HFD, mitochondrial oxidation of both pyruvate and fatty acids were similar between LFD and HFD mice. After 20 weeks of HFD, the increase in n-6 poly-unsaturated FA was accompanied by enhanced maximal capacity of the electron transport chain (+49%, p = 0.002) and a tendency for increased ADP-stimulated respiration, but only when fuelled by a lipid-derived substrate. Insulin sensitivity in HFD mice was reduced at both 8 and 20 weeks.Conclusions/InterpretationOur findings do not support the concept that prolonged HF feeding leads to increased saturation of skeletal muscle mitochondrial phospholipids resulting in a decrease in mitochondrial fat oxidative capacity and (muscle) insulin resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.