When human (cryopreserved) hepatocytes are used to establish sandwich cultures, the model appears particularly valuable to quantitatively investigate clinically relevant mechanisms related to in vivo hepatobiliary drug disposition and hepatotoxicity. Nonetheless, the SCH model would largely benefit from better insight into the fundamental cell signaling mechanisms that are critical for long-term in vitro maintenance of the hepatocytic phenotype. Studies systematically exploring improved cell culture conditions (e.g., co-cultures or extracellular matrix modifications), as well as in vitro work identifying key transcription factors involved in hepatocyte differentiation are currently emerging.
Lipid-based formulations (LBFs) are a delivery strategy to enhance intestinal absorption of poorly water-soluble drugs. LBF performance is typically evaluated by in vitro lipolysis studies, but these do not accurately predict the in vivo performance. One possible reason is the absence of an absorptive membrane driving sink conditions in the serosal compartment. To explore the impact of absorption under sink conditions on the performance evaluation, we developed a lipolysis-permeation setup that allows simultaneous investigation of intestinal digestion of an LBF and drug absorption. The setup consists of two chambers, an upper one for digestion (luminal), and a lower, receiving one (serosal), separated by a Caco-2 monolayer. Digestions were performed with immobilized lipase, instead of the pancreatic extract typically used during lipolysis, since the latter has proven incompatible with Caco-2 cells. Danazol-loaded LBFs were used to develop the setup, and fenofibrate-loaded LBFs were used to establish an in vitro in vivo correlation. As in regular lipolysis studies, our setup allows for the evaluation of (i) the extent of digestion and (ii) drug distribution in different phases present during lipolysis of drug-loaded LBFs (i.e., oil, aqueous, and solid phase). In addition, our setup can determine drug permeation across Caco-2 monolayers and hence, the absorptive flux of the compound. The presence of the absorptive monolayer and sink conditions tended to reduce aqueous drug concentrations and supersaturation in the digestion chamber. The drug transfer across the Caco-2 membrane accurately reflected in vivo drug exposure upon administration of three different LBFs loaded with fenofibrate, where the traditional lipolysis setup failed to predict in vivo performance. As the new setup reflects the dynamic processes occurring in the gastrointestinal tract, it is a valuable tool that can be used in the development of LBFs prior to in vivo studies.
PurposeTo identify conditions allowing the use of cell-based models for studies of drug absorption during in vitro lipolysis of lipid-based formulations (LBFs).MethodsCaco-2 was selected as the cell-based model system. Monolayer integrity was evaluated by measuring mannitol permeability after incubating Caco-2 cells in the presence of components available during lipolysis. Pure excipients and formulations representing the lipid formulation classification system (LFCS) were evaluated before and after digestion. Porcine mucin was evaluated for its capacity to protect the cell monolayer.ResultsMost undigested formulations were compatible with the cells (II-LC, IIIB-LC, and IV) although some needed mucin to protect against damaging effects (II-MC, IIIB-MC, I-LC, and IIIA-LC). The pancreatic extract commonly used in digestion studies was incompatible with the cells but the Caco-2 monolayers could withstand immobilized recombinant lipase. Upon digestion, long chain formulations caused more damage to Caco-2 cells than their undigested counterparts whereas medium chain formulations showed better tolerability after digestion.ConclusionsMost LBFs and components thereof (undigested and digested) are compatible with Caco-2 cells. Pancreatic enzyme is not tolerated by the cells but immobilized lipase can be used in combination with the cell monolayer. Mucin is beneficial for critical formulations and digestion products.Electronic supplementary materialThe online version of this article (10.1007/s11095-017-2327-8) contains supplementary material, which is available to authorized users.
The current study was designed to cross-validate rat liver microsomes (RLM), suspended rat hepatocytes (SRH) and the isolated perfused rat liver (IPRL) model against in vivo pharmacokinetic data, using verapamil as a model drug. Michaelis-Menten constants (Km), for the metabolic disappearance kinetics of verapamil in RLM and SRH (freshly isolated and cryopreserved), were determined and corrected for non-specific binding. The 'unbound' Km determined with RLM (2.8 µM) was divided by the 'unbound' Km determined with fresh and cryopreserved SRH (3.9 µM and 2.1 µM, respectively) to calculate the ratio of intracellular to extracellular unbound concentration (Kpu,u). Kpu,u was significantly different between freshly isolated (0.71) and cryopreserved (1.31) SRH, but intracellular capacity for verapamil metabolism was maintained after cryopreservation (200 vs. 191 µl/min/million cells). Direct comparison of intrinsic clearance values (Clint) in RLM versus SRH, yielded an activity-based scaling factor (SF) of 0.28-0.30 mg microsomal protein/million cells (MPPMC). Merging the IPRL-derived Clint with the MPPMC and SRH data, resulted in scaling factors for MPPGL (80 and 43 mg microsomal protein/g liver) and HPGL (269 and 153 million cells/g liver), respectively. Likewise, the hepatic blood flow (61 ml/min/kg b.wt) was calculated using IPRL Clint and the in vivo Cl. The scaling factors determined here are consistent with previously reported CYP450-content based scaling factors. Overall, the results show that integrated interpretation of data obtained with multiple preclinical tools (i.e. RLM, SRH, IPRL) can contribute to more reliable estimates for scaling factors and ultimately to improved in vivo clearance predictions based on in vitro experimentation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.