Diatoms are single-celled microalgae that produce silica-based cell walls with intricate nano-and micropatterns. Biogenesis of diatom biosilica is a bottom-up process that occurs in large intracellular compartments termed silica deposition vesicles (SDVs). Investigating the mechanisms of silica morphogenesis has so far been severely limited by the lack of methods for imaging the entire volume of an SDV with high spatial resolution during all stages of development. Here we have developed a method that allows for rapid identification and electron microscopy imaging of many different, full sized SDVs that are in the process of producing biosilica valves. This enabled visualizing the development of characteristic morphological biosilica features with unprecedented spatio-temporal resolution. During early to mid-term development, valve SDVs contained ~ 20 nm sized particles that were primarily associated with the radially expanding rib-like biosilica structures. The results from electron dispersive X-ray analysis suggests that the immature biosilica patterns are silica-organic composites. This supports the hypothesis that silica morphogenesis is dependent on organic biomolecules inside the SDV lumen.
Diatoms are single-celled microalgae that produce silica-based cell walls with intricate nano- and micropatterns. Biogenesis of diatom biosilica is a bottom-up process that occurs in large intracellular compartments termed silica deposition vesicles (SDVs). Investigating the mechanism of silica morphogenesis has so far been severely limited by the lack of methods for imaging the entire volume of an SDV with high spatial resolution during all stages of development. Here we have developed a method that allows for rapid identification and electron microscopy imaging of many different, full sized SDVs that are in the process of producing biosilica valves. This enabled visualizing the development of characteristic morphological biosilica features with unprecedented spatio-temporal resolution. During early to mid-term development, valve SDVs contained ~20 nm sized particles that were primarily associated with the radially expanding rib-like biosilica structures. The results from electron dispersive X-ray analysis suggests that the immature biosilica patterns are silica-organic composites. This supports the hypothesis that silica morphogenesis is dependent on organic biomolecules inside the SDV lumen.
Diatoms are single-celled microalgae that produce silica-based cell walls with intricate nano- and micropatterns. Biogenesis of diatom biosilica is a bottom-up process that occurs in large intracellular compartments termed silica deposition vesicles (SDVs). Investigating the mechanism of silica morphogenesis has so far been severely limited by the lack of methods for imaging the entire volume of an SDV with high spatial resolution during all stages of development. Here we have developed a method that allows for rapid identification and electron microscopy imaging of many different, full sized SDVs that are in the process of producing biosilica valves. This enabled visualizing the development of characteristic morphological biosilica features with unprecedented spatio-temporal resolution. During early to mid-term development, valve SDVs contained ~ 20 nm sized particles that were primarily associated with the radially expanding rib-like biosilica structures. The results from electron dispersive X-ray analysis suggests that the immature biosilica patterns are silica-organic composites. This supports the hypothesis that silica morphogenesis is dependent on organic biomolecules inside the SDV lumen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.