The energy density of lithium-ion batteries (LIBs) can be meaningfully increased by utilizing Si-on-graphite composites (Si@Gr) as anode materials, because of several advantages, including higher specific capacity and low cost. However, long cycling stability is a key challenge for commercializing these composites. In this study, to solve this issue, we have developed a multifunctional polymeric artificial solid−electrolyte interphase (A-SEI) protective layer on carbon-coated Si@Gr anode particles (making Si@Gr/C-SCS) to prolong the cycling stability in LIBs. The coating is made of sulfonated chitosan (SCS) that is crosslinked with glutaraldehyde promoting good ionic conduction together with sufficient mechanical strength of the A-SEI. The focused ion beam-scanning electron microscopy and high-resolution transmission electron microscopy images show that the SCS is uniformly coated on the composite particles with thickness in nanometer. The anodes are investigated in Li metal cells Si@Gr/C-SCS||Li metal) and lithium-ion full-cells (LiNi 0.6 Co 0.2 Mn 0.2 O 2 (NCM-622)||Si@Gr/C-SCS) to understand the material/electrode intrinsic degradation as well as the impact of the polymer coating on active lithium losses because of the continuous SEI (re)formation. The anode composites exhibit a high capacity reaching over 600 mAh g −1 , and even without electrolyte optimization, the Si@Gr/C-SCS illustrates a superior long cycle life performance of up to 1000 cycles (over 67% capacity retention). The excellent long-term cycling stability of the anodes was attributed to the SCS polymer coating acting as the A-SEI. The simple polymer coating process is highly interesting in guiding the preparation of long-cycle-life electrode materials of high-energy LIB cells.
Lithium‐ion battery cells with high‐energy density and good fast charging properties are subject of current research. One approach to achieve high‐energy densities is the use of higher mass loadings. The challenges of these so called “thick” electrodes are transport limitations: lithium ions cannot reach all layers of the electrode, which results in a drop of performance. Possible concepts to overcome these limitations are the use of different active materials (silicon oxide, graphite, and hard carbon (HC)), and a two‐layer coating of the anode to create a defined pore network, which reduces the ionic resistance and ensure better fast charging capability even at higher mass loadings (8 mAh cm−2). It could be demonstrated that by using a two‐layered anode with HC in the upper layer, the electrical conductivity could be increased by a factor of 10 compared to the reference anode. Furthermore, the interporous HC leads to a capacity retention increase up to 20% with no loss of capacity at moderate C‐rates and a low electrode density. This can be explained by the low tortuosity that results in additional conductive paths for the ions through the coating, reduces the ionic resistance, and ultimately enables faster lithiation of the anode.
Lithium-ion batteries (LIBs) provide the largest source of electrical energy storage today. This paper covers the use of comminution processes and, thus, crushers and mills for particle breakage and dispersing, as well as classifiers for particle separation within the process chain, from the raw material to the final lithium battery cell and its recycling at end of life. First of all, the raw materials for the active material production have to be produced either by processing primary raw materials, or by recycling the spent lithium batteries. The end-of-life battery cells have to be shredded, the materials separated and then milled in order to achieve the so-called black mass, which provides a secondary material source with very valuable components. Using these materials for the synthesis of the cathode active materials, milling has to be applied in different stages. The natural graphite, increasingly used as anode material, has to be designed in mills and classifiers for achieving targeted properties. Nanosized silicon is produced by nanomilling using stirred media mills as a primary option. Conductive additives for LIBs, like carbon black, have to be dispersed in a solvent with machines like planetary mixers, extruders or stirred media mills. In the future, mechanochemical synthesis of solid electrolytes will especially require additional application of comminution processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.