Seven lipases were screened for their ability to synthesize DAG in the glycerolysis of rapeseed oil. In batch reactions with free glycerol, the lipase carrier was of great importance for catalysis. Catalysis did not take place in reactions with lipases having hydrophilic carriers. The best DAG yield (approx. 60 wt%) was achieved with Novozym 435 and Lipase PS-D after 7 h, and an equilibrium was obtained. Stepwise addition of glycerol allowed catalysis with Novozym CALB L (immobilized) to take place in spite of the hydrophilic carrier; however, the DAG yield was only 19 wt%. This result suggests that glycerol forms a layer around the hydrophilic lipase particles, limiting contact between the lipases and the hydrophobic oil phase. With glycerol absorbed on silica gel, all lipases catalyzed the glycerolysis reaction. Faster conversion of TAG was obtained with Lipase PS-D, Lipase AK, and Lipase F-AP15 than in reactions with free glycerol, but the DAG yield remained approximately 60-65 wt%. Nonspecific lipases yielded more 1,3-DAG early in the reaction.Paper no. J10954 in JAOCS 82, 329-334 (May 2005).
Two approaches to shift the acylglycerol equilibrium were tested as follows: addition of monoacylglycerols and lowering of the temperature. None of these approaches were able to shift the equilibrium toward higher diacylglycerol (DAG) contents. The glycerolysis reaction was optimized with five factors using response surface methodology. Evaluation of the resulting model enabled the determination of optimal reaction conditions for glycerolysis aiming at high DAG yield. However, verification of the model showed that the model was unable to take the molecular equilibrium into account but it provided good insight in how process settings can be chosen to, for example, minimize production costs. Optimal conditions were found to be the following: no extra water, low content of glycerol (molar ratio of 2), temperature of 60-65 degrees C, 4-5 h reaction time, and only 5 wt % lipases. Up scaling of the glycerolysis process was performed and revealed that scale-up to a 20 kg production in a pilot plant batch reactor was possible with a similar DAG yield (60 wt %) as in lab scale. Purification of DAG oil using batch deodorization and short path distillation yielded 93 wt % pure DAG oil.
The impact of the reflection of fire-induced heat from a gas burner was studied experimentally to gain knowledge on the interaction between photovoltaic (PV) panels and a fire on flat roofs. The heat flux was measured in a total of eight points at the same level as the top of the gas burner. The gas burner was placed underneath the centre of a PV panel, installed in a geometry similar to a commercial EastWest orientated mounting system, and the eight points were symmetrical pairs of two at four different distances from the burner. Measurements were compared to tests with no PV panel, and thereby without the reflection from the PV panel. A significant increase of the received heat flux was recorded, with ascending percentage-wise difference for increased heat release rates. This indicates that PV panels can have a significant contribution in roof fires, primarily because they stimulate fire spread over the roof on which they have been mounted. The received heat flux is higher underneath the most elevated part of the PV panel, due to two important, flame-related reasons: 1) the flame deflection towards the most elevated part of the panel; 2) a non-homogeneous temperature distribution on the PV panel surface, due to the deflected flame, and thereby a non-homogeneous emission from the heated PV panel. Finally, the results were very similar for a brand new PV panel and a PV panel tested for the fourth time, except during the period when the thin combustible film underneath the new PV panel is burning, supporting that it is the fire dynamics and not the fire load associated with the PV panels that is promoting fire spread associated with PV panels on flat roofs. With this in mind, the current results are not only relevant for PV panels, but also for any inclined roof covering panel with limited combustibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.