Wind pollination may commonly evolve to provide reproductive assurance when pollinators are scarce. Evidence is presented that pollen limitation in wind-pollinated plants may not be as common as it is in animal-pollinated species. The studies of pollen capture in wind-pollinated herbs demonstrate that pollen transfer efficiency is not substantially lower than in animal-pollinated plants as is often assumed. These findings challenge the explanation that the evolution of few ovules in wind-pollinated flowers is associated with low pollen loads. Floral and inflorescence architecture is crucial to pollination and mating because of the aerodynamics of wind pollination. Evidence is provided for the importance of plant height, floral position, and stamen and stigma characteristics in promoting effective pollen dispersal and capture. Finally, it is proposed that geitonogamous selfing may alleviate pollen limitation in many wind-pollinated plants with unisexual flowers.
Organisms exhibit an incredible diversity of life history strategies as adaptive responses to environmental variation. The establishment of novel life history strategies involves multilocus polymorphisms, which will be challenging to establish in the face of gene flow and recombination. Theory predicts that adaptive allelic combinations may be maintained and spread if they occur in genomic regions of reduced recombination, such as chromosomal inversion polymorphisms, yet empirical support for this prediction is lacking. Here, we use genomic data to investigate the evolution of divergent adaptive ecotypes of the yellow monkey flower Mimulus guttatus. We show that a large chromosomal inversion polymorphism is the major region of divergence between geographically widespread annual and perennial ecotypes. In contrast, ∼40,000 single nucleotide polymorphisms in collinear regions of the genome show no signal of life history, revealing genomic patterns of diversity have been shaped by localized homogenizing gene flow and large‐scale Pleistocene range expansion. Our results provide evidence for an inversion capturing and protecting loci involved in local adaptation, while also explaining how adaptive divergence can occur with gene flow.
Flowering plants exhibit two principal life-history strategies: annuality (living and reproducing in one year) and perenniality (living more than one year). The advantages of either strategy depend on the relative benefits of immediate reproduction balanced against survivorship and future reproduction. This trade-off means that life-history strategies are associated with particular environments, with annuals being found more often in unpredictable habitats. Annuality and perenniality are the outcome of developmental genetic programs responding to their environment, with perennials being distinguished by their delayed competence to flower and reversion to growth after flowering. Evolutionary transitions between these strategies are frequent and have consequences for mating systems and genome evolution, with perennials being more likely to outcross with higher inbreeding depression and lower rates of molecular evolution. Integrating expectations from life-history theory with knowledge of the developmental genetics of flowering and seasonality is required to understand the mechanisms involved in the evolution of annual and perennial life histories. Expected final online publication date for the Annual Review of Ecology, Evolution, and Systematics, Volume 51 is November 2, 2020. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
The maintenance of high outcrossing rates in colonizing populations of A. artemisiifolia is likely to be facilitated by the prodigious production of wind-borne pollen, high seed production and extended seed dormancy.
Wind pollination is predominantly a derived condition in angiosperms and is thought to evolve in response to ecological conditions that render animal pollination less advantageous. However, the specific ecological and evolutionary mechanisms responsible for transitions from animal to wind pollination are poorly understood in comparison with other major reproductive transitions in angiosperms, including the evolution of selfing from outcrossing and dioecy from hermaphroditism. To investigate correlations between wind pollination and a range of characters including habitat type, sexual system, floral display size, floral showiness, and ovule number, we used a large-scale molecular phylogeny of the angiosperms and maximum likelihood methods to infer historical patterns of evolution. This approach enabled us to detect correlated evolution and the order of trait acquisition between pollination mode and each of nine characters. Log likelihood ratio tests supported a model of correlated evolution for wind pollination and habitat type, floral sexuality, sexual system, flower size, flower showiness, presence versus absence of nectar, and ovule number. In contrast, wind pollination and geographical distribution and number of flowers per inflorescence evolve independently. We found that in wind-pollinated taxa, nectar is lost more often and ovule number is reduced to one. We also found that wind pollination evolves more frequently in lineages already possessing unisexual flowers and/or unisexual plants. An understanding of the ecological and life-history context in which wind pollination originates is fundamental to further investigation of the microevolutionary forces causing transitions from animal to wind pollination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.