The grafting reaction between a trifunctional silylating agent and two kinds of 2:1 type layered silicates was studied using FTIR, XRD, TGA, and 29Si CP/MAS NMR. XRD patterns clearly indicate the introduction of 3-aminopropyltriethoxysilane (gamma-APS) into the clay interlayer. In the natural montmorillonite, gamma-APS adopts a parallel-bilayer arrangement, while it adopts a parallel-monolayer arrangement in the synthetic fluorohectorite. These different silane arrangements have a prominent effect on the mechanism of the condensation reaction within the clay gallery. In natural montmorillonite, the parallel-bilayer arrangement of gamma-APS results in bidentate (T2) and tridendate (T3) molecular environments, while the parallel-monolayer arrangement leads to monodentate (T1), as indicated by 29Si CP/MAS NMR spectra. This study demonstrates that the silylation reaction and the interlayer microstructure of the grafting products strongly depend on the original clay materials.
International audiencePoly (lactic acid) is an industrially mature, bio-sourced and biodegradable polymer. However, current applications of this eco-friendly material are limited as a result of its brittleness and its poorly melt properties. One of the keys to extend its processing window is to melt strengthen the native material. This paper considers the chain extension as a valuable solution for reaching such an objective. An additive based on epoxy-functionalized PLA was employed during reactive extrusion. The reaction times as a function of chain extender ratios were determined by monitoring the melt pressure during recirculating micro-extrusions. Once residence times were optimized, reactive extrusion experiments were performed on a twin screw extruder. Size exclusion chromatography provided information about the molecular weight distributions (MWD) of the modified PLAs and revealed the creation of a high molecular weight shoulder. The rheological experiments highlighted the enhancement of the melt properties brought about by the chain extension. Shear rheology revealed some enlarged and bimodal relaxation time spectra for the extended materials which are in accordance with the MWD analysis. Such a modification directly amplified the shear sensitivity of modified PLAs. Regarding the rheological temperature sensitivity, it was found to be decreased when the chain extender content is raised as shown from the Arrhenius viscosity fit. The reduction of the polar interactions from neat to highly chain-extended PLAs is here proposed to explain this surprising result. Chain extension was also found to impact on the elongational melt properties where strain hardening occurred for modified PLAs. Investigation of the chain extension architecture was made from the rheological data and revealed a long-chain branched topology for the modified PLAs
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.