Plant sap feeding insects like psyllids are known to be vectors of phloem dwelling bacteria (‘Candidatus Phytoplasma’ and ‘Ca. Liberibacter’), plant pathogens which cause severe diseases and economically important crop damage. Some univoltine psyllid species have a particular life cycle, within one generation they alternate two times between different host plant species. The plum psyllid Cacopsylla pruni, the vector of European Stone Fruit Yellows (ESFY), one of the most serious pests in European fruit production, migrates to stone fruit orchards (Prunus spp.) for mating and oviposition in early spring. The young adults of the new generation leave the Prunus trees in summer and emigrate to their overwintering hosts like spruce and other conifers. Very little is known about the factors responsible for the regulation of migration, reasons for host alternation, and the behavior of psyllids during their phase of life on conifers. Because insect feeding behavior and host acceptance is driven by different biotic factors, such as olfactory and gustatory cues as well as mechanical barriers, we carried out electrical penetration graph (EPG) recordings and survival bioassays with C. pruni on different conifer species as potential overwintering hosts and analyzed the chemical composition of the respective plant saps. We are the first to show that migrating psyllids do feed on overwintering hosts and that nymphs are able to ingest phloem and xylem sap of coniferous trees, but cannot develop on conifer diet. Analyses of plant saps reveal qualitative differences in the chemical composition between coniferous trees and Prunus as well as within conifer species. These differences are discussed with regard to nutritional needs of psyllid nymphs for proper development, overwintering needs of adults and restriction of ‘Ca. P. prunorum’ to Prunus phloem.
Apple proliferation disease is caused by the phloem-dwelling bacterium ‘Candidatus Phytoplasma mali’, inducing morphological changes in its host plant apple, such as witches’ broom formation. Furthermore, it triggers physiological alterations like emission of volatile organic compounds or phytohormone levels in the plant. In our study, we assessed phytoplasma-induced changes in the phloem by sampling phloem sap from infected and non-infected apple plants. In infected plants, the soluble sugar content increased and the composition of phloem metabolites differed significantly between non-infected and infected plants. Sugar and sugar alcohol levels increased in diseased plants, while organic and amino acid content remained constant. As ‘Ca. P. mali’ is vectored by the phloem-feeding insect Cacopsylla picta (Foerster, 1848), we assessed whether the insect–plant interaction was affected by ‘Ca. P. mali’ infection of the common host plant Malus domestica Borkh. Binary-choice oviposition bioassays between infected and non-infected apple leaves revealed C. picta’s preference for non-infected leaves. It is assumed and discussed that the changes in vector behavior are attributable to plant-mediated effects of the phytoplasma infection.
Phytoplasmas are specialized small bacteria restricted to the phloem tissue and spread by hemipterans feeding on plant sieve tube elements. As for many other plant pathogens, it is known that phytoplasmas alter the chemistry of their hosts. Most research on phytoplasma-plant interactions focused on the induction of plant volatiles and phytohormones. Little is known about the influence of phytoplasma infections on the nutritional composition of phloem and consequences on vector behavior and development. The plum psyllid Cacopsylla pruni transmits 'Candidatus Phytoplasma prunorum', the causing agent of European Stone Fruit Yellows (ESFY). While several Prunus species are susceptible for psyllid feeding, they show different responses to the pathogen. We studied the possible modulation of plant-insect interactions by bacteria-induced changes in phloem sap chemistry. Therefore, we sampled phloem sap from phytoplasma-infected and non-infected Prunus persica and Prunus insititia plants, which differ in their susceptibility to ESFY and psyllid feeding. Furthermore, the feeding behavior and development of C. pruni nymphs was compared on infected and non-infected P. persica and P. insititia plants. Phytoplasma infection did not affect phloem consumption by C. pruni nymphs nor their development time. In contrast, the study revealed significant differences between P. insititia and P. persica in terms of both phloem chemistry and feeding behavior of C. pruni nymphs. Phloem feeding phases were four times longer on P. insititia than on P. persica, resulting in a decreased development time and higher mortality of vector insects on P. persica plants. These findings explain the low infestation rates of peach cultivars with plum psyllids commonly found in field surveys.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.